-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbmshj2018_factorized_compressor.cpp
62 lines (50 loc) · 2.81 KB
/
bmshj2018_factorized_compressor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include "libs/tensorrt_logger.h"
#include "libs/tensorrt_wrapper.h"
#include "pipelines/bmshj2018_factorized_pipelines.h"
#include "libs/utils.h"
#include "libs/img_utils.h"
#include <argparse/argparse.hpp>
using namespace Bmshj2018Factorized::Pipelines;
int main(int argc, const char **argv) {
argparse::ArgumentParser parser("bmshj2018_factorized_compressor");
parser.add_description("Compress evaluation for bmshj2018_factorized");
parser.add_argument("model").help("g_a.trt model file");
parser.add_argument("coder_const").help("coder_const.bin constant file");
parser.add_argument("image").help("image file to evaluate");
parser.add_argument("-b", "--batch").default_value(1).help("batch size").scan<'u', unsigned int>();
parser.add_argument("-t", "--thread").default_value(2).help("threads for entropy coder").scan<'u', unsigned int>();
parser.add_argument("-h", "--height").required().help("image height").scan<'u', unsigned int>();
parser.add_argument("-w", "--width").required().help("image width").scan<'u', unsigned int>();
parser.add_argument("-z", "--zero-copy").default_value(false).implicit_value(true).help("enable zero copy");
parser.add_argument("-v", "--verbose").help("verbose output").default_value(false).implicit_value(true);
try {
parser.parse_args(argc, argv);
} catch (const std::runtime_error& err) {
std::cerr << "Error: " << err.what() << std::endl;
std::cerr << parser;
return 1;
}
auto batchSize = parser.get<unsigned int>("--batch");
auto height = parser.get<unsigned int>("--height");
auto width = parser.get<unsigned int>("--width");
bool verbose = parser.is_used("--verbose");
auto memoryMode = parser.is_used("--zero-copy") ? ZERO_COPY : NORMAL;
auto in = std::make_shared<MemoryWrapper<half>>(batchSize * 3 * height * width, memoryMode, HOST_TO_DEVICE);
readImgCHW(parser.get("image"), in->host, batchSize);
TensorRTLogger logger(verbose);
TensorRTWrapper trt(parser.get("model"), logger, false);
auto gpuPipeline = std::make_shared<CompressGpuPipeline>(trt, 5);
auto cpuPipeline = std::make_shared<CompressCpuPipeline>(width, height, parser.get("coder_const"), 5);
auto finalPipeline = std::make_shared<CompressStatisticsPipeline>(verbose, 5);
gpuPipeline->next(cpuPipeline)->next(finalPipeline);
gpuPipeline->executeAsync(1);
cpuPipeline->executeAsync(parser.get<unsigned int>("--thread"));
finalPipeline->executeAsync(1);
for (;;) {
size_t outBlockSize = 192 * ceil(height / 16) * ceil(width / 16);
auto out = std::make_shared<MemoryWrapper<half>>(batchSize * outBlockSize, memoryMode, DEVICE_TO_HOST);
auto task = std::make_shared<CompressGpuTask>(in, out, outBlockSize, batchSize);
gpuPipeline->feedTask(task);
}
return 0;
}