This is the official code repository for ICRA 2023 paper, Coarse-to-Fine Registration with SE(3)-Equivariant Representations [arxiv].
ModelNet40 with occupancy labels
$ python train.py
$ python demo.py --weights [checkpoints]
$ conda create -n cfreg python=3.8
$ conda install pytorch=1.9.0 cudatoolkit=11.1 -c pytorch -c nvidia
$ pip install -r requirement.txt
If you want to use it in your work, please cite it as
@inproceedings{lin2023coarse,
title={Coarse-to-fine point cloud registration with se (3)-equivariant representations},
author={Lin, Cheng-Wei and Chen, Tung-I and Lee, Hsin-Ying and Chen, Wen-Chin and Hsu, Winston H},
booktitle={2023 IEEE International Conference on Robotics and Automation (ICRA)},
pages={2833--2840},
year={2023},
organization={IEEE}
}