-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_imagenet.py
96 lines (75 loc) · 3.58 KB
/
run_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import time
from util.args_loader import get_args
from util import metrics
import torch
import faiss
import numpy as np
import torchvision.models as models
args = get_args()
seed = args.seed
print(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
np.random.seed(seed)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
class_num = 1000
id_train_size = 1281167
id_val_size = 50000
cache_dir = f"cache/{args.in_dataset}_train_{args.name}_in"
feat_log = torch.from_numpy(np.memmap(f"{cache_dir}/feat.mmap", dtype=float, mode='r', shape=(id_train_size, 2048))).to(device)
score_log = torch.from_numpy(np.memmap(f"{cache_dir}/score.mmap", dtype=float, mode='r', shape=(id_train_size, class_num))).to(device)
label_log = torch.from_numpy(np.memmap(f"{cache_dir}/label.mmap", dtype=float, mode='r', shape=(id_train_size,))).to(device)
cache_dir = f"cache/{args.in_dataset}_val_{args.name}_in"
feat_log_val = torch.from_numpy(np.memmap(f"{cache_dir}/feat.mmap", dtype=float, mode='r', shape=(id_val_size, 2048))).to(device)
score_log_val = torch.from_numpy(np.memmap(f"{cache_dir}/score.mmap", dtype=float, mode='r', shape=(id_val_size, class_num))).to(device)
label_log_val = torch.from_numpy(np.memmap(f"{cache_dir}/label.mmap", dtype=float, mode='r', shape=(id_val_size,))).to(device)
ood_feat_score_log = {}
ood_dataset_size = {
'inat':10000,
'sun50': 10000,
'places50': 10000,
'dtd': 5640
}
for ood_dataset in args.out_datasets:
ood_feat_log = torch.from_numpy(np.memmap(f"cache/{ood_dataset}vs{args.in_dataset}_{args.name}_out/feat.mmap", dtype=float, mode='r', shape=(ood_dataset_size[ood_dataset], 2048))).to(device)
ood_score_log = torch.from_numpy(np.memmap(f"cache/{ood_dataset}vs{args.in_dataset}_{args.name}_out/score.mmap", dtype=float, mode='r', shape=(ood_dataset_size[ood_dataset], class_num))).to(device)
ood_feat_score_log[ood_dataset] = ood_feat_log, ood_score_log
######## get w, b; precompute demoninator matrix, training feature mean #################
if args.name == 'resnet50':
net = models.resnet50(pretrained=True)
for i, param in enumerate(net.fc.parameters()):
if i == 0:
w = param.data
else:
b = param.data
elif args.name == 'resnet50-supcon':
checkpoint = torch.load('ckpt/ImageNet_resnet50_supcon_linear.pth')
w = checkpoint['model']['fc.weight']
b = checkpoint['model']['fc.bias']
train_mean = torch.mean(feat_log, dim= 0).to(device)
denominator_matrix = torch.zeros((1000,1000)).to(device)
for p in range(1000):
w_p = w - w[p,:]
denominator = torch.norm(w_p, dim=1)
denominator[p] = 1
denominator_matrix[p, :] = denominator
#################### fDBD score OOD detection #################
all_results = []
all_score_out = []
values, nn_idx = score_log_val.max(1)
logits_sub = torch.abs(score_log_val - values.repeat(1000, 1).T)
#pdb.set_trace()
score_in = torch.sum(logits_sub/denominator_matrix[nn_idx], axis=1)/torch.norm(feat_log_val - train_mean , dim = 1)
score_in = score_in.float().cpu().numpy()
for ood_dataset, (feat_log, score_log) in ood_feat_score_log.items():
values, nn_idx = score_log.max(1)
logits_sub = torch.abs(score_log - values.repeat(1000, 1).T)
scores_out_test = torch.sum(logits_sub/denominator_matrix[nn_idx], axis=1)/torch.norm(feat_log - train_mean , dim = 1)
scores_out_test = scores_out_test.float().cpu().numpy()
all_score_out.extend(scores_out_test)
results = metrics.cal_metric(score_in, scores_out_test)
all_results.append(results)
metrics.print_all_results(all_results, args.out_datasets, 'fDBD')
print()