-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
671 lines (574 loc) · 27.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import os
import codecs
import json
import random
import logging
import argparse
from tqdm import tqdm, trange
from sklearn import metrics
import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import BertForSequenceClassification
from pytorch_pretrained_bert.optimization import BertAdam
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_test_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the test set."""
raise NotImplementedError()
def get_ifrn_examples(self, text_list):
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_json(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
dicts = []
with codecs.open(input_file, 'r', 'utf-8') as infs:
for inf in infs:
inf = inf.strip()
dicts.append(json.loads(inf))
return dicts
class MyPro(DataProcessor):
'''自定义数据读取方法,针对json文件
Returns:
examples: 数据集,包含index、中文文本、类别三个部分
'''
def get_train_examples(self, data_dir):
return self._create_examples(
self._read_json(os.path.join(data_dir, "train.txt")), 'train')
def get_dev_examples(self, data_dir):
return self._create_examples(
self._read_json(os.path.join(data_dir, "valid.txt")), 'dev')
def get_test_examples(self, data_dir):
return self._create_examples(
self._read_json(os.path.join(data_dir, "test.txt")), 'test')
def get_ifrn_examples(self, text_list):
return self._create_ifrn_examples(text_list, "ifrn")
def get_labels(self):
return [0, 1]
def _create_ifrn_examples(self, text_list, set_type):
examples = []
for (i, text) in enumerate(text_list):
guid = "%s-%s" % (set_type, i)
examples.append(
InputExample(guid=guid, text_a=text.strip()))
return examples
def _create_examples(self, dicts, set_type):
examples = []
for (i, infor) in enumerate(dicts):
guid = "%s-%s" % (set_type, i)
text_a = infor['text']
label = infor['label']
examples.append(
InputExample(guid=guid, text_a=text_a, label=label))
return examples
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, show_exp=True):
'''Loads a data file into a list of `InputBatch`s.
Args:
examples : [List] 输入样本,包括question, label, index
label_list : [List] 所有可能的类别,可以是int、str等,如['book', 'city', ...]
max_seq_length: [int] 文本最大长度
tokenizer : [Method] 分词方法
Returns:
features:
input_ids : [ListOf] token的id,在chinese模式中就是每个分词的id,对应一个word vector
input_mask : [ListOfInt] 真实字符对应1,补全字符对应0
segment_ids: [ListOfInt] 句子标识符,第一句全为0,第二句全为1
label_id : [ListOfInt] 将Label_list转化为相应的id表示
'''
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
features = []
for (ex_index, example) in enumerate(examples):
tokens_a = tokenizer.tokenize(example.text_a)
tokens_b = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambigiously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
segment_ids = []
tokens.append("[CLS]")
segment_ids.append(0)
for token in tokens_a:
tokens.append(token)
segment_ids.append(0)
tokens.append("[SEP]")
segment_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
segment_ids.append(1)
tokens.append("[SEP]")
segment_ids.append(1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = None
if example.label is not None:
label_id = label_map[example.label]
if ex_index < 5 and show_exp:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
if example.label is not None:
logger.info("label: %s (id = %d)" % (example.label, label_id))
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def copy_optimizer_params_to_model(named_params_model, named_params_optimizer):
""" Utility function for optimize_on_cpu and 16-bits training.
Copy the parameters optimized on CPU/RAM back to the model on GPU
"""
for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
if name_opti != name_model:
logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
raise ValueError
param_model.data.copy_(param_opti.data)
def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False):
""" Utility function for optimize_on_cpu and 16-bits training.
Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model
"""
is_nan = False
for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model):
if name_opti != name_model:
logger.error("name_opti != name_model: {} {}".format(name_opti, name_model))
raise ValueError
if param_model.grad is not None:
if test_nan and torch.isnan(param_model.grad).sum() > 0:
is_nan = True
if param_opti.grad is None:
param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size()))
param_opti.grad.data.copy_(param_model.grad.data)
else:
param_opti.grad = None
return is_nan
def val(model, processor, args, label_list, tokenizer, device):
'''模型验证
Args:
model: 模型
processor: 数据读取方法
args: 参数表
label_list: 所有可能类别
tokenizer: 分词方法
device
Returns:
f1: F1值
'''
eval_examples = processor.get_dev_examples(args.data_dir)
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer, show_exp=False)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
model.eval()
predict = np.zeros((0,), dtype=np.int32)
gt = np.zeros((0,), dtype=np.int32)
for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
logits = model(input_ids, segment_ids, input_mask)
pred = logits.max(1)[1]
predict = np.hstack((predict, pred.cpu().numpy()))
gt = np.hstack((gt, label_ids.cpu().numpy()))
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
print(len(gt))
f1 = np.mean(metrics.f1_score(predict, gt, average=None))
print(f1)
return f1
def test(model, processor, args, label_list, tokenizer, device):
'''模型测试
Args:
model: 模型
processor: 数据读取方法
args: 参数表
label_list: 所有可能类别
tokenizer: 分词方法
device
Returns:
f1: F1值
'''
test_examples = processor.get_test_examples(args.data_dir)
test_features = convert_examples_to_features(
test_examples, label_list, args.max_seq_length, tokenizer)
all_input_ids = torch.tensor([f.input_ids for f in test_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in test_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in test_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in test_features], dtype=torch.long)
test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
# Run prediction for full data
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.eval_batch_size)
model.eval()
predict = np.zeros((0,), dtype=np.int32)
gt = np.zeros((0,), dtype=np.int32)
for input_ids, input_mask, segment_ids, label_ids in test_dataloader:
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
with torch.no_grad():
logits = model(input_ids, segment_ids, input_mask)
pred = logits.max(1)[1]
predict = np.hstack((predict, pred.cpu().numpy()))
gt = np.hstack((gt, label_ids.cpu().numpy()))
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
f1 = np.mean(metrics.f1_score(predict, gt, average=None))
print('F1 score in text set is {}'.format(f1))
return f1
def main():
# ArgumentParser对象保存了所有必要的信息,用以将命令行参数解析为相应的python数据类型
parser = argparse.ArgumentParser()
# required parameters
# 调用add_argument()向ArgumentParser对象添加命令行参数信息,这些信息告诉ArgumentParser对象如何处理命令行参数
parser.add_argument("--data_dir",
default='./data',
type=str,
# required = True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model",
default='bert-base-chinese',
type=str,
# required = True,
help="choose [bert-base-chinese] mode.")
parser.add_argument("--task_name",
default='MyPro',
type=str,
# required = True,
help="The name of the task to train.")
parser.add_argument("--output_dir",
default='checkpoints/',
type=str,
# required = True,
help="The output directory where the model checkpoints will be written")
parser.add_argument("--model_save_pth",
default='checkpoints/bert_classification.pth',
type=str,
# required = True,
help="The output directory where the model checkpoints will be written")
# other parameters
parser.add_argument("--max_seq_length",
default=120,
type=int,
help="字符串最大长度")
parser.add_argument("--do_train",
default=True,
action='store_true',
help="训练模式")
parser.add_argument("--do_eval",
default=True,
action='store_true',
help="验证模式")
parser.add_argument("--do_lower_case",
default=False,
action='store_true',
help="英文字符的大小写转换,对于中文来说没啥用")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="训练时batch大小")
parser.add_argument("--eval_batch_size",
default=1,
type=int,
help="验证时batch大小")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="Adam初始学习步长")
parser.add_argument("--num_train_epochs",
default=10.0,
type=float,
help="训练的epochs次数")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for."
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="用不用CUDA")
parser.add_argument("--local_rank",
default=-1,
type=int,
help="local_rank for distributed training on gpus.")
parser.add_argument("--seed",
default=777,
type=int,
help="初始化时的随机数种子")
parser.add_argument("--gradient_accumulation_steps",
default=1,
type=int,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--optimize_on_cpu",
default=False,
action='store_true',
help="Whether to perform optimization and keep the optimizer averages on CPU.")
parser.add_argument("--fp16",
default=False,
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit.")
parser.add_argument("--loss_scale",
default=128,
type=float,
help="Loss scaling, positive power of 2 values can improve fp16 convergence.")
args = parser.parse_args()
# 对模型输入进行处理的processor,git上可能都是针对英文的processor
processors = {'mypro': MyPro}
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
device = torch.device("cuda", args.local_rank)
n_gpu = 1
torch.distributed.init_process_group(backend='nccl')
if args.fp16:
logger.info("16-bits training currently not supported in distributed training")
args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496)
logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
os.makedirs(args.output_dir, exist_ok=True)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels()
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
train_examples = None
num_train_steps = None
if args.do_train:
train_examples = processor.get_train_examples(args.data_dir)
num_train_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
# Prepare model
print(PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(args.local_rank))
model = BertForSequenceClassification.from_pretrained(args.bert_model,
cache_dir=PYTORCH_PRETRAINED_BERT_CACHE / 'distributed_{}'.format(
args.local_rank), num_labels=len(label_list))
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[args.local_rank],
output_device=args.local_rank)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
if args.fp16:
param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
for n, param in model.named_parameters()]
elif args.optimize_on_cpu:
param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
for n, param in model.named_parameters()]
else:
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
t_total = num_train_steps
if args.local_rank != -1:
t_total = t_total // torch.distributed.get_world_size()
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=t_total)
global_step = 0
if args.do_train:
train_features = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer, show_exp=False)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_steps)
all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)
model.train()
best_score = 0
flags = 0
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.fp16 and args.loss_scale != 1.0:
# rescale loss for fp16 training
# see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
loss = loss * args.loss_scale
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16 or args.optimize_on_cpu:
if args.fp16 and args.loss_scale != 1.0:
# scale down gradients for fp16 training
for param in model.parameters():
if param.grad is not None:
param.grad.data = param.grad.data / args.loss_scale
is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True)
if is_nan:
logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling")
args.loss_scale = args.loss_scale / 2
model.zero_grad()
continue
optimizer.step()
copy_optimizer_params_to_model(model.named_parameters(), param_optimizer)
else:
optimizer.step()
model.zero_grad()
f1 = val(model, processor, args, label_list, tokenizer, device)
if f1 > best_score:
best_score = f1
print('*f1 score = {}'.format(f1))
flags = 0
checkpoint = {
'state_dict': model.state_dict()
}
torch.save(checkpoint, args.model_save_pth)
else:
print('f1 score = {}'.format(f1))
flags += 1
if flags >= 6:
break
model.load_state_dict(torch.load(args.model_save_pth)['state_dict'])
test(model, processor, args, label_list, tokenizer, device)
if __name__ == '__main__':
main()