forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTensor.h
742 lines (690 loc) · 29 KB
/
Tensor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
#pragma once
#include <c10/Device.h>
#include <c10/core/Layout.h>
#include <c10/core/Scalar.h>
#include <c10/core/ScalarType.h>
#include <ATen/core/SparseTensorRef.h>
#include <c10/core/Storage.h>
#include <ATen/core/TensorAccessor.h>
#include <c10/core/TensorImpl.h>
#include <c10/core/UndefinedTensorImpl.h>
#include <c10/util/Exception.h>
#include <c10/util/Optional.h>
#include <ATen/core/LegacyTypeDispatch.h>
namespace c10{
struct TensorOptions;
}
namespace at {
struct Generator;
struct Type;
class Tensor;
} // namespace at
namespace at {
class Tensor;
using TensorList = ArrayRef<Tensor>;
// Tensor is a "generic" object holding a pointer to the underlying TensorImpl object, which
// has an embedded reference count. In this way, Tensor is similar to boost::intrusive_ptr.
//
// For example:
//
// void func(Tensor a) {
// Tensor b = a;
// ...
// }
//
// In this example, when we say Tensor b = a, we are creating a new object that points to the
// same underlying TensorImpl, and bumps its reference count. When b goes out of scope, the
// destructor decrements the reference count by calling release() on the TensorImpl it points to.
// The existing constructors, operator overloads, etc. take care to implement the correct semantics.
//
// Note that Tensor can also be NULL, i.e. it is not associated with any underlying TensorImpl, and
// special care must be taken to handle this.
class CAFFE2_API Tensor {
public:
Tensor(){};
Tensor(c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
: impl_(std::move(tensor_impl)) {
if (impl_.get() == nullptr) {
throw std::runtime_error("TensorBaseImpl with nullptr not supported");
}
}
Tensor(const Tensor&) = default;
Tensor(Tensor&&) = default;
int64_t dim() const {
return impl_->dim();
}
int64_t storage_offset() const {
return impl_->storage_offset();
}
TensorImpl * unsafeGetTensorImpl() const {
return impl_.get();
}
TensorImpl * unsafeReleaseTensorImpl() {
return impl_.release();
}
const c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl>& getIntrusivePtr() const {
return impl_;
}
bool defined() const {
return impl_;
}
void reset() {
impl_.reset();
}
// The following overloads are very intruiging. Consider the following
// program:
//
// x[1] = 3;
//
// We would expect that the first entry of x is written to 3. But how can we
// actually achieve this? x[1] evaluates to a tensor...
//
// The answer is, using a ref-qualifier. x[1] is an rvalue, which cannot be
// (profitably) assigned to in the traditional sense, so we overload
// assignment to mean, "Actually, copy 3 into the tensor data." This is done
// with an rvalue-reference ref-qualified overload (the methods with && at the
// end of their type.)
//
// There's one more fly in the ointment: We also want
//
// Tensor x = y;
//
// to work, and we want it NOT to copy. So we need a traditional operator=
// overload. But we MUST specify a mutable lvalue ref-qualifier, to
// disambiguate the traditional overload from the rvalue-reference
// ref-qualified overload. Otherwise, it will be ambiguous, because
// a non ref-qualified method is eligible for all situations.
// Unfortunately, we have to write these constructors out manually
// to work around an MSVC bug:
// error C2580: 'at::Tensor &at::Tensor::operator =(const at::Tensor &) &':
// multiple versions of a defaulted special member functions are not allowed
// Tensor& operator=(const Tensor&) & = default;
// Tensor& operator=(Tensor&&) & = default;
Tensor& operator=(const Tensor& x) & {
impl_ = x.impl_;
return *this;
}
Tensor& operator=(Tensor&& x) & {
impl_ = std::move(x.impl_);
return *this;
}
Tensor& operator=(Scalar v) &&;
Tensor& operator=(const Tensor&) &&;
Tensor& operator=(Tensor&&) &&;
bool is_same(const Tensor& other) const noexcept {
return impl_ == other.impl_;
}
size_t use_count() const noexcept {
return impl_.use_count();
}
size_t weak_use_count() const noexcept {
return impl_.weak_use_count();
}
const char * toString() const;
IntList sizes() const {
return impl_->sizes();
}
IntList strides() const {
return impl_->strides();
}
int64_t ndimension() const {
return dim();
}
bool is_contiguous() const {
return impl_->is_contiguous();
}
Type & type() const {
return legacyTensorType(*impl_);
}
TensorTypeId type_id() const {
return impl_->type_id();
}
ScalarType scalar_type() const {
return typeMetaToScalarType(impl_->dtype());
}
const Storage& storage() const {
return impl_->storage();
}
bool is_alias_of(const at::Tensor& other) const{
return impl_->storage().is_alias_of(other.storage());
}
Tensor toType(const Type & t, bool non_blocking=false) const;
Tensor & copy_(const Tensor & src, bool non_blocking=false);
Tensor toType(ScalarType t) const;
Tensor toBackend(Backend b) const;
/// Returns true if the `Tensor` is actually a `torch::autograd::Variable`.
/// Defined in Type.h because of include order issues.
bool is_variable() const noexcept;
/// Returns a `Tensor`'s layout. Defined in Type.h
Layout layout() const noexcept;
/// Returns a `Tensor`'s dtype (`TypeMeta`). Defined in TensorMethods.h
caffe2::TypeMeta dtype() const noexcept;
/// Returns a `Tensor`'s device.
Device device() const;
/// Returns a `Tensor`'s device index.
int64_t get_device() const;
/// Returns if a `Tensor` has CUDA backend.
bool is_cuda() const;
/// Returns if a `Tensor` has HIP backend.
bool is_hip() const;
/// Returns if a `Tensor` has sparse backend.
bool is_sparse() const;
/// Returns the `TensorOptions` corresponding to this `Tensor`. Defined in
/// TensorOptions.h.
TensorOptions options() const;
template<typename T>
T * data() const;
template <typename T>
T item() const;
// Purposely not defined here to avoid inlining
void print() const;
// Return a `TensorAccessor` for CPU `Tensor`s. You have to specify scalar type and
// dimension.
template<typename T, size_t N>
TensorAccessor<T,N> accessor() const& {
static_assert(N > 0, "accessor is used for indexing tensor, for scalars use *data<T>()");
AT_CHECK(dim() == N, "expected ", N, " dims but tensor has ", dim());
return TensorAccessor<T,N>(data<T>(),sizes().data(),strides().data());
}
template<typename T, size_t N>
TensorAccessor<T,N> accessor() && = delete;
// Return a `PackedTensorAccessor` for CUDA `Tensor`s. You have to specify scalar type and
// dimension. You can optionally specify RestrictPtrTraits as a template parameter to
// cast the data pointer to a __restrict__ pointer.
// In order to use this, your CUDA kernel has to take a corresponding PackedTensorAccessor
// as an argument.
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
PackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() const& {
static_assert(N > 0, "accessor is used for indexing tensor, for scalars use *data<T>()");
AT_CHECK(dim() == N, "expected ", N, " dims but tensor has ", dim());
return PackedTensorAccessor<T,N,PtrTraits,index_t>(static_cast<typename PtrTraits<T>::PtrType>(data<T>()),sizes().data(),strides().data());
}
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
PackedTensorAccessor<T,N> packed_accessor() && = delete;
Tensor operator-() const;
Tensor& operator+=(const Tensor & other);
Tensor& operator+=(Scalar other);
Tensor& operator-=(const Tensor & other);
Tensor& operator-=(Scalar other);
Tensor& operator*=(const Tensor & other);
Tensor& operator*=(Scalar other);
Tensor& operator/=(const Tensor & other);
Tensor& operator/=(Scalar other);
Tensor operator[](Scalar index) const;
Tensor operator[](Tensor index) const;
Tensor operator[](int64_t index) const;
Tensor cpu() const;
Tensor cuda() const;
Tensor hip() const;
// ~~~~~ Autograd API ~~~~~
Tensor& set_requires_grad(bool requires_grad) {
impl_->set_requires_grad(requires_grad);
return *this;
}
bool requires_grad() const {
return impl_->requires_grad();
}
Tensor& grad() {
return impl_->grad();
}
const Tensor& grad() const {
return impl_->grad();
}
void set_data(Tensor new_data);
/// Computes the gradient of current tensor w.r.t. graph leaves.
void backward(
c10::optional<Tensor> gradient = c10::nullopt,
bool keep_graph = false,
bool create_graph = false);
// STOP. Thinking of adding a method here, which only makes use
// of other ATen methods? Define it in native_functions.yaml.
//example
//Tensor * add(Tensor & b);
Tensor abs() const;
Tensor & abs_();
Tensor acos() const;
Tensor & acos_();
Tensor add(const Tensor & other, Scalar alpha=1) const;
Tensor & add_(const Tensor & other, Scalar alpha=1);
Tensor add(Scalar other, Scalar alpha=1) const;
Tensor & add_(Scalar other, Scalar alpha=1);
Tensor addmv(const Tensor & mat, const Tensor & vec, Scalar beta=1, Scalar alpha=1) const;
Tensor & addmv_(const Tensor & mat, const Tensor & vec, Scalar beta=1, Scalar alpha=1);
Tensor addr(const Tensor & vec1, const Tensor & vec2, Scalar beta=1, Scalar alpha=1) const;
Tensor & addr_(const Tensor & vec1, const Tensor & vec2, Scalar beta=1, Scalar alpha=1);
Tensor all(int64_t dim, bool keepdim=false) const;
bool allclose(const Tensor & other, double rtol=1e-05, double atol=1e-08, bool equal_nan=false) const;
Tensor any(int64_t dim, bool keepdim=false) const;
Tensor argmax(int64_t dim, bool keepdim=false) const;
Tensor argmax() const;
Tensor argmin(int64_t dim, bool keepdim=false) const;
Tensor argmin() const;
Tensor as_strided(IntList size, IntList stride) const;
Tensor & as_strided_(IntList size, IntList stride);
Tensor as_strided(IntList size, IntList stride, int64_t storage_offset) const;
Tensor & as_strided_(IntList size, IntList stride, int64_t storage_offset);
Tensor asin() const;
Tensor & asin_();
Tensor atan() const;
Tensor & atan_();
Tensor baddbmm(const Tensor & batch1, const Tensor & batch2, Scalar beta=1, Scalar alpha=1) const;
Tensor & baddbmm_(const Tensor & batch1, const Tensor & batch2, Scalar beta=1, Scalar alpha=1);
Tensor bernoulli(Generator * generator=nullptr) const;
Tensor & bernoulli_(const Tensor & p, Generator * generator=nullptr);
Tensor & bernoulli_(double p=0.5, Generator * generator=nullptr);
Tensor bernoulli(double p, Generator * generator=nullptr) const;
Tensor bincount(const Tensor & weights={}, int64_t minlength=0) const;
Tensor bmm(const Tensor & mat2) const;
Tensor ceil() const;
Tensor & ceil_();
std::vector<Tensor> chunk(int64_t chunks, int64_t dim=0) const;
Tensor clamp(c10::optional<Scalar> min=c10::nullopt, c10::optional<Scalar> max=c10::nullopt) const;
Tensor & clamp_(c10::optional<Scalar> min=c10::nullopt, c10::optional<Scalar> max=c10::nullopt);
Tensor clamp_max(Scalar max) const;
Tensor & clamp_max_(Scalar max);
Tensor clamp_min(Scalar min) const;
Tensor & clamp_min_(Scalar min);
Tensor contiguous() const;
Tensor cos() const;
Tensor & cos_();
Tensor cosh() const;
Tensor & cosh_();
Tensor cumsum(int64_t dim, ScalarType dtype) const;
Tensor cumsum(int64_t dim) const;
Tensor cumprod(int64_t dim, ScalarType dtype) const;
Tensor cumprod(int64_t dim) const;
Tensor det() const;
Tensor diag_embed(int64_t offset=0, int64_t dim1=-2, int64_t dim2=-1) const;
Tensor diagflat(int64_t offset=0) const;
Tensor diagonal(int64_t offset=0, int64_t dim1=0, int64_t dim2=1) const;
Tensor div(const Tensor & other) const;
Tensor & div_(const Tensor & other);
Tensor div(Scalar other) const;
Tensor & div_(Scalar other);
Tensor dot(const Tensor & tensor) const;
Tensor & resize_(IntList size);
Tensor erf() const;
Tensor & erf_();
Tensor erfc() const;
Tensor & erfc_();
Tensor exp() const;
Tensor & exp_();
Tensor expm1() const;
Tensor & expm1_();
Tensor expand(IntList size, bool implicit=false) const;
Tensor expand_as(const Tensor & other) const;
Tensor flatten(int64_t start_dim=0, int64_t end_dim=-1) const;
Tensor & fill_(Scalar value);
Tensor & fill_(const Tensor & value);
Tensor floor() const;
Tensor & floor_();
Tensor ger(const Tensor & vec2) const;
std::tuple<Tensor,Tensor> gesv(const Tensor & A) const;
Tensor fft(int64_t signal_ndim, bool normalized=false) const;
Tensor ifft(int64_t signal_ndim, bool normalized=false) const;
Tensor rfft(int64_t signal_ndim, bool normalized=false, bool onesided=true) const;
Tensor irfft(int64_t signal_ndim, bool normalized=false, bool onesided=true, IntList signal_sizes={}) const;
Tensor index(TensorList indices) const;
Tensor & index_copy_(int64_t dim, const Tensor & index, const Tensor & source);
Tensor index_put(TensorList indices, const Tensor & values, bool accumulate=false) const;
Tensor & index_put_(TensorList indices, const Tensor & values, bool accumulate=false);
Tensor inverse() const;
Tensor isclose(const Tensor & other, double rtol=1e-05, double atol=1e-08, bool equal_nan=false) const;
bool is_distributed() const;
bool is_floating_point() const;
bool is_complex() const;
bool is_nonzero() const;
bool is_same_size(const Tensor & other) const;
bool is_signed() const;
std::tuple<Tensor,Tensor> kthvalue(int64_t k, int64_t dim=-1, bool keepdim=false) const;
Tensor log() const;
Tensor & log_();
Tensor log10() const;
Tensor & log10_();
Tensor log1p() const;
Tensor & log1p_();
Tensor log2() const;
Tensor & log2_();
Tensor logdet() const;
Tensor log_softmax(int64_t dim, ScalarType dtype) const;
Tensor log_softmax(int64_t dim) const;
Tensor logsumexp(int64_t dim, bool keepdim=false) const;
Tensor matmul(const Tensor & other) const;
Tensor matrix_power(int64_t n) const;
std::tuple<Tensor,Tensor> max(int64_t dim, bool keepdim=false) const;
Tensor max_values(int64_t dim, bool keepdim=false) const;
Tensor mean(ScalarType dtype) const;
Tensor mean() const;
Tensor mean(IntList dim, bool keepdim, ScalarType dtype) const;
Tensor mean(IntList dim, bool keepdim=false) const;
Tensor mean(IntList dim, ScalarType dtype) const;
std::tuple<Tensor,Tensor> median(int64_t dim, bool keepdim=false) const;
std::tuple<Tensor,Tensor> min(int64_t dim, bool keepdim=false) const;
Tensor min_values(int64_t dim, bool keepdim=false) const;
Tensor mm(const Tensor & mat2) const;
std::tuple<Tensor,Tensor> mode(int64_t dim=-1, bool keepdim=false) const;
Tensor mul(const Tensor & other) const;
Tensor & mul_(const Tensor & other);
Tensor mul(Scalar other) const;
Tensor & mul_(Scalar other);
Tensor mv(const Tensor & vec) const;
Tensor mvlgamma(int64_t p) const;
Tensor & mvlgamma_(int64_t p);
Tensor narrow_copy(int64_t dim, int64_t start, int64_t length) const;
Tensor narrow(int64_t dim, int64_t start, int64_t length) const;
Tensor permute(IntList dims) const;
Tensor pin_memory() const;
Tensor pinverse(double rcond=1e-15) const;
Tensor repeat(IntList repeats) const;
Tensor reshape(IntList shape) const;
Tensor reshape_as(const Tensor & other) const;
Tensor round() const;
Tensor & round_();
Tensor relu() const;
Tensor & relu_();
Tensor prelu(const Tensor & weight) const;
std::tuple<Tensor,Tensor> prelu_backward(const Tensor & grad_output, const Tensor & weight) const;
Tensor hardshrink(Scalar lambd=0.5) const;
Tensor hardshrink_backward(const Tensor & grad_out, Scalar lambd) const;
Tensor rsqrt() const;
Tensor & rsqrt_();
Tensor select(int64_t dim, int64_t index) const;
Tensor sigmoid() const;
Tensor & sigmoid_();
Tensor sin() const;
Tensor & sin_();
Tensor sinh() const;
Tensor & sinh_();
Tensor detach() const;
Tensor & detach_();
int64_t size(int64_t dim) const;
Tensor slice(int64_t dim=0, int64_t start=0, int64_t end=9223372036854775807, int64_t step=1) const;
std::tuple<Tensor,Tensor> slogdet() const;
Tensor smm(const Tensor & mat2) const;
Tensor softmax(int64_t dim, ScalarType dtype) const;
Tensor softmax(int64_t dim) const;
std::vector<Tensor> split(int64_t split_size, int64_t dim=0) const;
std::vector<Tensor> split_with_sizes(IntList split_sizes, int64_t dim=0) const;
Tensor squeeze() const;
Tensor squeeze(int64_t dim) const;
Tensor & squeeze_();
Tensor & squeeze_(int64_t dim);
Tensor sspaddmm(const Tensor & mat1, const Tensor & mat2, Scalar beta=1, Scalar alpha=1) const;
Tensor stft(int64_t n_fft, int64_t hop_length, int64_t win_length, const Tensor & window={}, bool normalized=false, bool onesided=true) const;
int64_t stride(int64_t dim) const;
Tensor sum(ScalarType dtype) const;
Tensor sum() const;
Tensor sum(IntList dim, bool keepdim, ScalarType dtype) const;
Tensor sum(IntList dim, bool keepdim=false) const;
Tensor sum(IntList dim, ScalarType dtype) const;
Tensor sum_to_size(IntList size) const;
Tensor sqrt() const;
Tensor & sqrt_();
Tensor std(bool unbiased=true) const;
Tensor std(IntList dim, bool unbiased=true, bool keepdim=false) const;
Tensor prod(ScalarType dtype) const;
Tensor prod() const;
Tensor prod(int64_t dim, bool keepdim, ScalarType dtype) const;
Tensor prod(int64_t dim, bool keepdim=false) const;
Tensor prod(int64_t dim, ScalarType dtype) const;
Tensor t() const;
Tensor & t_();
Tensor tan() const;
Tensor & tan_();
Tensor tanh() const;
Tensor & tanh_();
Tensor transpose(int64_t dim0, int64_t dim1) const;
Tensor & transpose_(int64_t dim0, int64_t dim1);
Tensor flip(IntList dims) const;
Tensor roll(IntList shifts, IntList dims={}) const;
Tensor rot90(int64_t k=1, IntList dims={0,1}) const;
Tensor trunc() const;
Tensor & trunc_();
Tensor type_as(const Tensor & other) const;
Tensor unsqueeze(int64_t dim) const;
Tensor & unsqueeze_(int64_t dim);
Tensor var(bool unbiased=true) const;
Tensor var(int64_t dim, bool unbiased=true, bool keepdim=false) const;
Tensor view_as(const Tensor & other) const;
Tensor where(const Tensor & condition, const Tensor & other) const;
Tensor norm(Scalar p=2) const;
Tensor norm(Scalar p, int64_t dim, bool keepdim=false) const;
Tensor clone() const;
Tensor & resize_as_(const Tensor & the_template);
Tensor pow(Scalar exponent) const;
Tensor & zero_();
Tensor sub(const Tensor & other, Scalar alpha=1) const;
Tensor & sub_(const Tensor & other, Scalar alpha=1);
Tensor sub(Scalar other, Scalar alpha=1) const;
Tensor & sub_(Scalar other, Scalar alpha=1);
Tensor addmm(const Tensor & mat1, const Tensor & mat2, Scalar beta=1, Scalar alpha=1) const;
Tensor & addmm_(const Tensor & mat1, const Tensor & mat2, Scalar beta=1, Scalar alpha=1);
Tensor & sparse_resize_(IntList size, int64_t sparse_dim, int64_t dense_dim);
Tensor & sparse_resize_and_clear_(IntList size, int64_t sparse_dim, int64_t dense_dim);
Tensor sparse_mask(SparseTensorRef mask) const;
Tensor to_dense() const;
int64_t sparse_dim() const;
int64_t _dimI() const;
int64_t dense_dim() const;
int64_t _dimV() const;
int64_t _nnz() const;
Tensor coalesce() const;
bool is_coalesced() const;
Tensor _indices() const;
Tensor _values() const;
Tensor & _coalesced_(bool coalesced);
Tensor indices() const;
Tensor values() const;
int64_t numel() const;
std::vector<Tensor> unbind(int64_t dim=0) const;
Tensor to_sparse(int64_t sparse_dim) const;
Tensor to_sparse() const;
Tensor to(const TensorOptions & options, bool non_blocking=false, bool copy=false) const;
Tensor to(Device device, ScalarType dtype, bool non_blocking=false, bool copy=false) const;
Tensor to(ScalarType dtype, bool non_blocking=false, bool copy=false) const;
Tensor to(const Tensor & other, bool non_blocking=false, bool copy=false) const;
Scalar item() const;
void* data_ptr() const;
Tensor & set_(Storage source);
Tensor & set_(Storage source, int64_t storage_offset, IntList size, IntList stride={});
Tensor & set_(const Tensor & source);
Tensor & set_();
bool is_set_to(const Tensor & tensor) const;
Tensor & masked_fill_(const Tensor & mask, Scalar value);
Tensor & masked_fill_(const Tensor & mask, const Tensor & value);
Tensor & masked_scatter_(const Tensor & mask, const Tensor & source);
Tensor view(IntList size) const;
Tensor & put_(const Tensor & index, const Tensor & source, bool accumulate=false);
Tensor & index_add_(int64_t dim, const Tensor & index, const Tensor & source);
Tensor & index_fill_(int64_t dim, const Tensor & index, Scalar value);
Tensor & index_fill_(int64_t dim, const Tensor & index, const Tensor & value);
Tensor & scatter_(int64_t dim, const Tensor & index, const Tensor & src);
Tensor & scatter_(int64_t dim, const Tensor & index, Scalar value);
Tensor & scatter_add_(int64_t dim, const Tensor & index, const Tensor & src);
Tensor & lt_(Scalar other);
Tensor & lt_(const Tensor & other);
Tensor & gt_(Scalar other);
Tensor & gt_(const Tensor & other);
Tensor & le_(Scalar other);
Tensor & le_(const Tensor & other);
Tensor & ge_(Scalar other);
Tensor & ge_(const Tensor & other);
Tensor & eq_(Scalar other);
Tensor & eq_(const Tensor & other);
Tensor & ne_(Scalar other);
Tensor & ne_(const Tensor & other);
Tensor __and__(Scalar other) const;
Tensor __and__(const Tensor & other) const;
Tensor & __iand__(Scalar other);
Tensor & __iand__(const Tensor & other);
Tensor __or__(Scalar other) const;
Tensor __or__(const Tensor & other) const;
Tensor & __ior__(Scalar other);
Tensor & __ior__(const Tensor & other);
Tensor __xor__(Scalar other) const;
Tensor __xor__(const Tensor & other) const;
Tensor & __ixor__(Scalar other);
Tensor & __ixor__(const Tensor & other);
Tensor __lshift__(Scalar other) const;
Tensor __lshift__(const Tensor & other) const;
Tensor & __ilshift__(Scalar other);
Tensor & __ilshift__(const Tensor & other);
Tensor __rshift__(Scalar other) const;
Tensor __rshift__(const Tensor & other) const;
Tensor & __irshift__(Scalar other);
Tensor & __irshift__(const Tensor & other);
Tensor & lgamma_();
Tensor & atan2_(const Tensor & other);
Tensor & tril_(int64_t diagonal=0);
Tensor & triu_(int64_t diagonal=0);
Tensor & digamma_();
Tensor & polygamma_(int64_t n);
Tensor & erfinv_();
Tensor & frac_();
Tensor & renorm_(Scalar p, int64_t dim, Scalar maxnorm);
Tensor & reciprocal_();
Tensor & neg_();
Tensor & pow_(Scalar exponent);
Tensor & pow_(const Tensor & exponent);
Tensor & lerp_(const Tensor & end, Scalar weight);
Tensor & sign_();
Tensor & fmod_(Scalar other);
Tensor & fmod_(const Tensor & other);
Tensor & remainder_(Scalar other);
Tensor & remainder_(const Tensor & other);
Tensor & addbmm_(const Tensor & batch1, const Tensor & batch2, Scalar beta=1, Scalar alpha=1);
Tensor addbmm(const Tensor & batch1, const Tensor & batch2, Scalar beta=1, Scalar alpha=1) const;
Tensor & addcmul_(const Tensor & tensor1, const Tensor & tensor2, Scalar value=1);
Tensor & addcdiv_(const Tensor & tensor1, const Tensor & tensor2, Scalar value=1);
Tensor & random_(int64_t from, int64_t to, Generator * generator=nullptr);
Tensor & random_(int64_t to, Generator * generator=nullptr);
Tensor & random_(Generator * generator=nullptr);
Tensor & uniform_(double from=0, double to=1, Generator * generator=nullptr);
Tensor & normal_(double mean=0, double std=1, Generator * generator=nullptr);
Tensor & cauchy_(double median=0, double sigma=1, Generator * generator=nullptr);
Tensor & log_normal_(double mean=1, double std=2, Generator * generator=nullptr);
Tensor & exponential_(double lambd=1, Generator * generator=nullptr);
Tensor & geometric_(double p, Generator * generator=nullptr);
Tensor diag(int64_t diagonal=0) const;
Tensor cross(const Tensor & other, int64_t dim=-1) const;
Tensor triu(int64_t diagonal=0) const;
Tensor tril(int64_t diagonal=0) const;
Tensor trace() const;
Tensor ne(Scalar other) const;
Tensor ne(const Tensor & other) const;
Tensor eq(Scalar other) const;
Tensor eq(const Tensor & other) const;
Tensor ge(Scalar other) const;
Tensor ge(const Tensor & other) const;
Tensor le(Scalar other) const;
Tensor le(const Tensor & other) const;
Tensor gt(Scalar other) const;
Tensor gt(const Tensor & other) const;
Tensor lt(Scalar other) const;
Tensor lt(const Tensor & other) const;
Tensor take(const Tensor & index) const;
Tensor index_select(int64_t dim, const Tensor & index) const;
Tensor masked_select(const Tensor & mask) const;
Tensor nonzero() const;
Tensor gather(int64_t dim, const Tensor & index) const;
Tensor addcmul(const Tensor & tensor1, const Tensor & tensor2, Scalar value=1) const;
Tensor addcdiv(const Tensor & tensor1, const Tensor & tensor2, Scalar value=1) const;
std::tuple<Tensor,Tensor> gels(const Tensor & A) const;
std::tuple<Tensor,Tensor> trtrs(const Tensor & A, bool upper=true, bool transpose=false, bool unitriangular=false) const;
std::tuple<Tensor,Tensor> symeig(bool eigenvectors=false, bool upper=true) const;
std::tuple<Tensor,Tensor> eig(bool eigenvectors=false) const;
std::tuple<Tensor,Tensor,Tensor> svd(bool some=true, bool compute_uv=true) const;
Tensor cholesky(bool upper=false) const;
Tensor potrs(const Tensor & input2, bool upper=true) const;
Tensor potri(bool upper=true) const;
std::tuple<Tensor,Tensor> pstrf(bool upper=true, Scalar tol=-1) const;
std::tuple<Tensor,Tensor> qr() const;
std::tuple<Tensor,Tensor> geqrf() const;
Tensor orgqr(const Tensor & input2) const;
Tensor ormqr(const Tensor & input2, const Tensor & input3, bool left=true, bool transpose=false) const;
std::tuple<Tensor,Tensor> btrifact(bool pivot=true) const;
std::tuple<Tensor,Tensor,Tensor> btrifact_with_info(bool pivot=true) const;
Tensor btrisolve(const Tensor & LU_data, const Tensor & LU_pivots) const;
Tensor multinomial(int64_t num_samples, bool replacement=false, Generator * generator=nullptr) const;
Tensor lgamma() const;
Tensor digamma() const;
Tensor polygamma(int64_t n) const;
Tensor erfinv() const;
Tensor frac() const;
Tensor dist(const Tensor & other, Scalar p=2) const;
Tensor reciprocal() const;
Tensor neg() const;
Tensor atan2(const Tensor & other) const;
Tensor lerp(const Tensor & end, Scalar weight) const;
Tensor histc(int64_t bins=100, Scalar min=0, Scalar max=0) const;
Tensor sign() const;
Tensor fmod(Scalar other) const;
Tensor fmod(const Tensor & other) const;
Tensor remainder(Scalar other) const;
Tensor remainder(const Tensor & other) const;
Tensor min(const Tensor & other) const;
Tensor min() const;
Tensor max(const Tensor & other) const;
Tensor max() const;
Tensor median() const;
std::tuple<Tensor,Tensor> sort(int64_t dim=-1, bool descending=false) const;
std::tuple<Tensor,Tensor> topk(int64_t k, int64_t dim=-1, bool largest=true, bool sorted=true) const;
Tensor all() const;
Tensor any() const;
Tensor renorm(Scalar p, int64_t dim, Scalar maxnorm) const;
Tensor unfold(int64_t dimension, int64_t size, int64_t step) const;
bool equal(const Tensor & other) const;
Tensor pow(const Tensor & exponent) const;
Tensor alias() const;
// We changed .dtype() to return a TypeMeta in #12766. Ideally, we want the
// at::kDouble and its friends to be TypeMeta's, but that hasn't happened yet.
// Before that change, we make this method to maintain BC for C++ usage like
// `x.to(y.dtype)`.
// TODO: remove following two after at::kDouble and its friends are TypeMeta's.
inline Tensor to(caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
return this->to(/*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
}
inline Tensor to(Device device, caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
return this->to(device, /*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
}
template <typename F, typename... Args>
auto m(F func, Args&&... params) const -> decltype(func(*this, std::forward<Args>(params)...)) {
return func(*this, std::forward<Args>(params)...);
}
friend struct WeakTensor;
protected:
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> impl_;
};
struct CAFFE2_API WeakTensor {
WeakTensor(const Tensor& t) : weak_impl_(t.impl_) {}
// XXX: this can return undefined tensors
// Ideally it would be c10::optional<Tensor>, but MSVC is too cool for that
Tensor lock() const {
return Tensor(weak_impl_.lock());
}
bool is_same(const WeakTensor& other) const noexcept {
return weak_impl_ == other.weak_impl_;
}
size_t use_count() const noexcept {
return weak_impl_.use_count();
}
size_t weak_use_count() const noexcept {
return weak_impl_.weak_use_count();
}
TensorImpl* unsafeGetTensorImpl() const {
return weak_impl_._unsafe_get_target();
}
private:
c10::weak_intrusive_ptr<TensorImpl, UndefinedTensorImpl> weak_impl_;
};
namespace detail {
// Helper creator for Tensor clas which doesn't requires the users to pass
// in an intrusive_ptr instead it just converts the argument passed to
// requested intrusive_ptr type.
template <typename T, typename... Args>
Tensor make_tensor(Args&&... args) {
return Tensor(c10::make_intrusive<T>(std::forward<Args>(args)...));
}
} // namespace detail
} // namespace at
#include <ATen/core/TensorMethods.h>