-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
217 lines (188 loc) · 8.96 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import pandas as pd
from tqdm import tqdm
import numpy as np
from sklearn.metrics import mean_squared_error,explained_variance_score
from sklearn.model_selection import KFold
import lightgbm as lgb
import math
from math import radians, cos, sin, sqrt, asin
import warnings
warnings.filterwarnings('ignore')
train_gps_path = '/data4/mjx/GPS/train.csv'
test_data_path = '/data4/mjx/GPS/A_testData0531.csv'
order_data_path = '/data4/mjx/GPS/loadingOrderEvent.csv'
port_data_path = '/data4/mjx/GPS/port.csv'
# 取前1000000行
debug = True
NDATA = 1000000
if debug:
train_data = pd.read_csv(train_gps_path,nrows=NDATA,header=None)
else:
train_data = pd.read_csv(train_gps_path,header=None)
train_data.columns = ['loadingOrder','carrierName','timestamp','longitude',
'latitude','vesselMMSI','speed','direction','vesselNextport',
'vesselNextportETA','vesselStatus','vesselDatasource','TRANSPORT_TRACE']
test_data = pd.read_csv(test_data_path)
def get_data(data, mode='train'):
assert mode=='train' or mode=='test'
if mode=='train':
data['vesselNextportETA'] = pd.to_datetime(data['vesselNextportETA'], infer_datetime_format=True)
elif mode=='test':
data['temp_timestamp'] = data['timestamp']
data['onboardDate'] = pd.to_datetime(data['onboardDate'], infer_datetime_format=True)
data['timestamp'] = pd.to_datetime(data['timestamp'], infer_datetime_format=True)
data['longitude'] = data['longitude'].astype(float)
data['loadingOrder'] = data['loadingOrder'].astype(str)
data['latitude'] = data['latitude'].astype(float)
data['speed'] = data['speed'].astype(float)
data['direction'] = data['direction'].astype(float)
return data
train_data = get_data(train_data, mode='train')
test_data = get_data(test_data, mode='test')
test_data.to_csv('test_data.csv', index = False)
train_data.to_csv('train_data.csv',index = False)
def lon2x (lon):
"""
:param lon: 经度
:return:
"""
L = 6381372*math.pi*2 #地球周长
W = L #平面展开,将周长视为X轴
x = lon*math.pi/180 #将经度从度数转换为弧度
x = (W/2)+(W/(2*math.pi))*x
return round(x)
def lat2y (lat):
"""
:param lat: 维度
:return:
"""
L = 6381372*math.pi*2
H = L/2
mill = 2.3
y = lat*math.pi/180
y = 1.25*math.log(math.tan(0.25*math.pi+0.4*y)) #米勒投影的转换
y = (H/2)-(H/(2*mill))*y # 这里将弧度转为实际距离 ,转换结果的单位是公里
return round(y)
#python计算两点间距离-m
def geodistance(lon1,lat1,lon2,lat2):
lon1 = list(map(np.radians, lon1))
lon2 = list(map(np.radians, lon2))
lat1 = list(map(np.radians, lat1))
lat2 = list(map(np.radians, lat2))
# lon1, lat1, log2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon=lon2-lon1
dlat=lat2-lat1
a=sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
dis=2*asin(sqrt(a))*6371*1000
return dis
def get_feature(df, mode='train'):
assert mode=='train' or mode=='test'
df.sort_values(['loadingOrder', 'timestamp'], inplace=True)
# 特征只选择经纬度、速度\方向
# df['coordinate_x'] = df[['latitude', 'longitude']].apply(lambda x: ','.join(x), axis=1)
df['coordinate_y'] = df['latitude'].apply(lat2y)
df['coordinate_x'] = df['longitude'].apply(lon2x)
# lat_1 = np.array(df.groupby('loadingOrder', as_index = True)['latitude'])
# lon_1 = np.array(df.groupby('loadingOrder', as_index = True)['longitude'])
# lat_2 = np.array(df.groupby('loadingOrder')['latitude'].shift(1))
# lon_2 = np.array(df.groupby('loadingOrder')['longitude'].shift(1))
# lon_1_1 = map(radians, lon_1)
# dis = geodistance(lon_1,lat_1,lon_2,lat_2)
x_diff = np.array(df['coordinate_x'].diff(1))
y_diff = np.array(df['coordinate_y'].diff(1))
assert len(x_diff) == len(y_diff)
diff = np.sqrt(np.square(x_diff) + np.square(y_diff))
df['distance'] = diff
# df['coordinate'] = df.groupby('loadingOrder')['latitude'] + df.groupby('loadingOrder')['longitude']
# lat = df.groupby('loadingOrder').get_group('loadingOrder')
# a,b = (df['coordinate'][1]).split(',')[0], (df['coordinate'][1]).split(',')[1]
df['lat_diff'] = df.groupby('loadingOrder')['latitude'].diff(1)
df['lon_diff'] = df.groupby('loadingOrder')['longitude'].diff(1)
df['speed_diff'] = df.groupby('loadingOrder')['speed'].diff(1)
df['diff_minutes'] = df.groupby('loadingOrder')['timestamp'].diff(1).dt.total_seconds() // 60
df['anchor'] = df.apply(lambda x: 1 if x['lat_diff'] <= 0.03 and x['lon_diff'] <= 0.03
and x['speed_diff'] <= 0.3 and x['diff_minutes'] <= 10 else 0, axis=1)
if mode=='train':
group_df = df.groupby('loadingOrder')['timestamp'].agg(mmax='max', count='count', mmin='min').reset_index()
# 读取数据的最大值-最小值,即确认时间间隔为label
group_df['label'] = (group_df['mmax'] - group_df['mmin']).dt.total_seconds()
elif mode=='test':
group_df = df.groupby('loadingOrder')['timestamp'].agg(count='count').reset_index()
anchor_df = df.groupby('loadingOrder')['anchor'].agg('sum').reset_index()
anchor_df.columns = ['loadingOrder', 'anchor_cnt']
group_df = group_df.merge(anchor_df, on='loadingOrder', how='left')
group_df['anchor_ratio'] = group_df['anchor_cnt'] / group_df['count']
distance_df = df.groupby('loadingOrder')['distance'].agg('sum').reset_index()
distance_df.columns = ['loadingOrder', 'distance']
group_df = group_df.merge(distance_df, on='loadingOrder', how='left')
group_df['distance'] = group_df['distance'] / 10000
agg_function = ['min', 'max', 'mean', 'median']
agg_col = ['latitude', 'longitude', 'speed', 'direction']
group = df.groupby('loadingOrder')[agg_col].agg(agg_function).reset_index()
group.columns = ['loadingOrder'] + ['{}_{}'.format(i, j) for i in agg_col for j in agg_function]
group_df = group_df.merge(group, on='loadingOrder', how='left')
return group_df
# train = get_feature(train_data, mode='train')
# train.to_csv('train_after_EDA.csv', index=False)
# test = get_feature(test_data, mode='test')
# test.to_csv('test_after_EDA.csv', index=False)
train = pd.read_csv('train_after_EDA.csv')
test = pd.read_csv('test_after_EDA.csv')
features = [c for c in train.columns if c not in ['loadingOrder', 'label', 'mmin', 'mmax', 'count']]
def mse_score_eval(preds, valid):
labels = valid.get_label()
scores = mean_squared_error(y_true=labels, y_pred=preds)
return 'mse_score', scores, True
def build_model(train, test, pred, label, seed=1080, is_shuffle=True):
train_pred = np.zeros((train.shape[0], ))
test_pred = np.zeros((test.shape[0], ))
n_splits = 10
# Kfold
fold = KFold(n_splits=n_splits, shuffle=is_shuffle, random_state=seed)
kf_way = fold.split(train[pred])
# params
params = {
'learning_rate': 0.1,
'boosting_type': 'gbdt',
'objective': 'regression',
'num_leaves': 36,
'feature_fraction': 0.6,
'bagging_fraction': 0.7,
'bagging_freq': 6,
'seed': 8,
'bagging_seed': 1,
'feature_fraction_seed': 7,
'min_data_in_leaf': 20,
'nthread': 8,
'verbose': 1,
}
# train
for n_fold, (train_idx, valid_idx) in enumerate(kf_way, start=1):
train_x, train_y = train[pred].iloc[train_idx], train[label].iloc[train_idx]
valid_x, valid_y = train[pred].iloc[valid_idx], train[label].iloc[valid_idx]
# 数据加载
n_train = lgb.Dataset(train_x, label=train_y)
n_valid = lgb.Dataset(valid_x, label=valid_y)
clf = lgb.train( params=params,
train_set=n_train,
num_boost_round=3000,
valid_sets=[n_valid],
early_stopping_rounds=100,
verbose_eval=100,
feval=mse_score_eval
)
train_pred[valid_idx] = clf.predict(valid_x, num_iteration=clf.best_iteration)
test_pred += clf.predict(test[pred], num_iteration=clf.best_iteration)/fold.n_splits
test['label'] = test_pred
return test[['loadingOrder', 'label']]
def train_xgb():
result = build_model(train, test, features, 'label', is_shuffle=True)
test_data = test_data.merge(result, on='loadingOrder', how='left')
test_data['ETA'] = (test_data['onboardDate'] + test_data['label'].apply(lambda x:pd.Timedelta(seconds=x))).apply(lambda x:x.strftime('%Y/%m/%d %H:%M:%S'))
test_data.drop(['direction','TRANSPORT_TRACE'],axis=1,inplace=True)
test_data['onboardDate'] = test_data['onboardDate'].apply(lambda x:x.strftime('%Y/%m/%d %H:%M:%S'))
test_data['creatDate'] = pd.datetime.now().strftime('%Y/%m/%d %H:%M:%S')
test_data['timestamp'] = test_data['temp_timestamp']
# 整理columns顺序
result = test_data[['loadingOrder', 'timestamp', 'longitude', 'latitude', 'carrierName', 'vesselMMSI', 'onboardDate', 'ETA', 'creatDate']]
result.to_csv('result.csv', index=False)