-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathscript_show_minist.m
58 lines (57 loc) · 1.69 KB
/
script_show_minist.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
%% register caffe environment for windows matlab
%% you may comment line 4 to 6 if you are using linux platform
addpath(fullfile(fileparts(pwd)))
cd +caffe/private;
caffe.reset_all;
cd ../..;
%% configure && active caffe
clear input feature;
caffe.reset_all;
caffe.init_log('log/');
%% configure
param.bs = 128;
load mnist_data;
s = caffe.get_solver('model/solver_test.prototxt', 0);
i=1;
for i = 1 : 3
switch i
case 1
model_name = 'coco_loss';
case 2
model_name = 'softmax_loss';
case 3
model_name = 'center+softmax_loss';
end
s.use_caffemodel(fullfile('model', model_name, '10epoches.caffemodel'));
s.set_phase('test');
feature{i} = zeros(length(label_te), 3);
for iter = 1 : ceil(length(label_te)/param.bs)
this_id = mod((iter-1)*param.bs:(iter*param.bs-1), length(label_te))+1;
input{1}{1} = reshape(single(convert_img2caffe(img_te(:,:,this_id)))-127.5, [28 28 1 param.bs])/255;
s.reshape_as_input(input);
s.set_input_data(input);
s.forward_prefilled();
t = s.nets{1}.blobs('ip1').get_data();
feature{i}(this_id,:) =squeeze(t)';
end
end
color = hsv(10);
close all;
for j = 1 : 3
figure(j)
switch j
case 1
model_name = 'coco\_loss';
case 2
model_name = 'softmax\_loss';
case 3
model_name = 'center+softmax_loss';
end
for i = 0 : 9
id = find(label_te==i);
scatter3(feature{j}(id(1:5:end),1), feature{j}(id(1:5:end),2),feature{j}(id(1:5:end),3), 4, 'MarkerEdgeColor', color(i+1,:));
hold on
end
legend('0', '1', '2', '3', '4', '5', '6', '7', '8', '9');
title(model_name);
end