-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
26 lines (22 loc) · 1.12 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import torch
from torchvision import datasets, transforms
def get_dataset(dir, name):
if name == 'cifar':
# Set two conversion formats
# transforms.Compose is a combination of multiple transforms (a list of transforms)
transform_train = transforms.Compose([
# transforms.RandomCrop: 切割中心点的位置随机选取
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# transforms.Normalize: 给定均值:(R,G,B) 方差:(R,G,B),将会把Tensor正则化
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_dataset = datasets.CIFAR10(dir, train=True, download=True,
transform=transform_train)
eval_dataset = datasets.CIFAR10(dir, train=False, transform=transform_test)
return train_dataset, eval_dataset