-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualize_performance.py
203 lines (181 loc) · 6.89 KB
/
visualize_performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import numpy
import matplotlib.pyplot as plt
import torch
import tqdm
import model.config
import model.yolov3
import model.loss
import model.utils
import argparse
CONFIG_SELECTIONS = {
"model.config": model.config.BUILD_CONFIG,
"default": model.yolov3.default_config,
"tiny": model.yolov3.config_tiny,
}
def make_predictions(yolo_model, data_loader):
loop = tqdm.tqdm(data_loader, leave=True)
bbox_predictions = []
# yolo_model.to(model.config.DEVICE)
for batch_idx, (x, y) in enumerate(loop):
# make sure all data uses CUDA or CPU device
x = x.to(model.config.DEVICE)
# y0, y1, y2 = (
# y[0].to(model.config.DEVICE),
# y[1].to(model.config.DEVICE),
# y[2].to(model.config.DEVICE),
# )
# cast data to correct format
with torch.cuda.amp.autocast():
out = yolo_model(x.half())
bboxes = [model.utils.cells_to_bboxes(
scale_prediction,
model.config.ANCHORS_1D,
model.config.SCALES,
) for scale_prediction in out]
bbox_predictions.append(bboxes)
return bbox_predictions
def visualize_data(loader):
import matplotlib.pyplot as plt
for batch_idx, (x_batch, (y0b, y1b, y2b)) in enumerate(loader):
for x, y0, y1, y2 in zip(x_batch, y0b, y1b, y2b):
X = x[0, :]
x_linspace = numpy.linspace(0, 1, len(X))
plt.plot(x_linspace, X)
# y0 13 cells
for j in range(y0.shape[0]):
for i in range(13):
objectness, cell_mean, cell_width, class_lbl = y0[j, i].numpy()
if objectness > 0.5:
print("cell mu, cell width")
print(cell_mean, cell_width)
mu = (i+cell_mean)/13
w = cell_width/13
x0 = mu - w/2
x1 = mu + w/2
print("curve mu, curve width")
print(mu, w)
print("x0, x1")
print(x0, x1)
plt.axvspan(x0, x1, color="green", alpha=0.5)
plt.text(mu, 0, class_lbl)
plt.show()
# y1 26 cells
# y2 52 cells
def main(args):
train_loader, test_loader, train_eval_loader = \
model.utils.get_loaders(
train_csv_path=os.path.join(
model.config.DATASET, "train_annotations.csv"),
test_csv_path=os.path.join(
model.config.DATASET, "test_annotations.csv"),
shuffle=False,
return_bboxes=True,
)
if args.visualize_train_data:
visualize_data(train_loader)
exit()
yolov3 = model.yolov3.Yolo1DV3(
num_classes=model.config.NUM_CLASSES,
in_channels=model.config.IN_CHANNELS,
num_anchors_per_scale=args.aps,
config=CONFIG_SELECTIONS.get(args.config)
).to(model.config.DEVICE)
optimizer = torch.optim.Adam(
yolov3.parameters(),
lr=model.config.LEARNING_RATE,
weight_decay=model.config.WEIGHT_DECAY
)
loss_fn = model.loss.Yolo1DLoss()
scaler = torch.cuda.amp.GradScaler()
model.utils.load_checkpoint(
args.checkpoint_file,
model=yolov3,
optimizer=optimizer,
lr=model.config.LEARNING_RATE
)
print("=> making predictions on test data")
pred_boxes, true_boxes = model.utils.get_evaluation_bboxes(
test_loader, yolov3,
iou_threshold=model.config.NMS_IOU_THRESH,
anchors=model.config.ANCHORS_1D,
threshold=model.config.CONF_THRESHOLD,
box_format="midpoint"
)
print(len(pred_boxes))
print(len(true_boxes))
# load curves
curves = []
for i, (x_batch, y_batch) in enumerate(test_loader):
#print(type(x_batch))
x_batch = x_batch.numpy()
#print(type(x_batch))
#print(x_batch)
curves.extend([x_batch[i, 0, :] for i in range(x_batch.shape[0])])
# yikes very inefficient code below
# but... quick and dirty solution
# plot curves with bboxes
x_linspace = numpy.linspace(0, 1, 416)
for i, curve in enumerate(curves):
# get all true bboxes
gt_labels = ["Ground Truth"]
pred_labels = ["Predictions"]
plt.figure(figsize=(10, 8))
j, k = 1, 1
for bbox in true_boxes:
if bbox[0] == i:
idx, clslbl, conf, xm, w = bbox
str_lbl = model.config.TEST_LABELS_1D_DATA[int(clslbl)]
x0 = xm - w/2
x1 = xm + w/2
plt.axvspan(x0, x1, color='green', alpha=0.2)
plt.axvline(x0, color='green')
plt.axvline(x1, color='green')
gt_labels.append(f"• Label {j}:\n class: {str_lbl}\n $\mu$: {xm:.3f}, $w$: {w:.3f}")
j += 1
# get all predicted bboxes
for bbox in pred_boxes:
if bbox[0] == i:
idx, clslbl, conf, xm, w = bbox
str_lbl = model.config.TEST_LABELS_1D_DATA[int(clslbl)]
x0 = xm - w/2
x1 = xm + w/2
plt.axvspan(x0, x1, color='red', alpha=0.5)
lbl = (f"• Prediction {k}:\n class: {str_lbl}\n conf: {conf:.3f}"
f" $\mu$: {xm:.3f}, $w$: {w:.3f}\n")
pred_labels.append(lbl)
k += 1
plt.text(0.1, 0.9, "\n".join(gt_labels), color="green",
transform=plt.gca().transAxes,
va="top", ha="left",
bbox=dict(facecolor='white',
alpha=0.7,
edgecolor='green',
boxstyle='round')
)
plt.text(0.7, 0.9, "\n\n".join(pred_labels), color="red",
transform=plt.gca().transAxes,
va="top", ha="left",
bbox=dict(facecolor='white',
alpha=0.7,
edgecolor='red',
boxstyle='round')
)
plt.xlabel("normalized domain")
plt.ylabel("normalized height")
plt.plot(x_linspace, curve)
plt.show()
if __name__ == "__main__":
# parse args
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_file", help="checkpoint loading file")
parser.add_argument("--aps", help="anchors per scale", type=int)
parser.add_argument("--visualize_train_data", action="store_true")
parser.add_argument("--config", type=str,
help="which yolo model to build. This is intricately linked with"
"which checkpoint file you load.",
choices=CONFIG_SELECTIONS.keys(),
)
args = parser.parse_args()
# main
main(args)