forked from tensorflow/minigo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
228 lines (190 loc) · 8.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import argh
import os.path
import collections
import random
import re
import socket
import sys
import time
import cloud_logging
from tqdm import tqdm
import gzip
import numpy as np
import tensorflow as tf
from tensorflow import gfile
import go
import dual_net
from gtp_wrapper import make_gtp_instance, MCTSPlayer
import preprocessing
import selfplay_mcts
from utils import logged_timer as timer
import evaluation
import sgf_wrapper
import utils
# How many positions we should aggregate per 'chunk'.
EXAMPLES_PER_RECORD = 10000
# How many positions to draw from for our training window.
# AGZ used the most recent 500k games, which, assuming 250 moves/game = 125M
WINDOW_SIZE = 125000000
def _ensure_dir_exists(directory):
if directory.startswith('gs://'):
return
os.makedirs(directory, exist_ok=True)
def gtp(load_file: "The path to the network model files"=None,
readouts: 'How many simulations to run per move'=100,
cgos_mode: 'Whether to use CGOS time constraints'=False,
verbose=1):
engine = make_gtp_instance(load_file,
readouts_per_move=readouts,
verbosity=verbose,
cgos_mode=cgos_mode)
sys.stderr.write("GTP engine ready\n")
sys.stderr.flush()
while not engine.disconnect:
inpt = input()
# handle either single lines at a time
# or multiple commands separated by '\n'
try:
cmd_list = inpt.split("\n")
except:
cmd_list = [inpt]
for cmd in cmd_list:
engine_reply = engine.send(cmd)
sys.stdout.write(engine_reply)
sys.stdout.flush()
def bootstrap(
working_dir: 'tf.estimator working directory.',
model_save_path: 'Where to export the first bootstrapped generation'):
_ensure_dir_exists(working_dir)
_ensure_dir_exists(os.path.dirname(model_save_path))
dual_net.bootstrap(working_dir)
dual_net.export_model(working_dir, model_save_path)
def train(
working_dir: 'tf.estimator working directory.',
chunk_dir: 'Directory where gathered training chunks are.',
model_save_path: 'Where to export the completed generation.',
generation_num: 'Which generation you are training.'=0):
tf_records = sorted(gfile.Glob(os.path.join(chunk_dir, '*.tfrecord.zz')))
tf_records = tf_records[-1 * (WINDOW_SIZE // EXAMPLES_PER_RECORD):]
print("Training from:", tf_records[0], "to", tf_records[-1])
with timer("Training"):
dual_net.train(working_dir, tf_records, generation_num)
dual_net.export_model(working_dir, model_save_path)
def validate(
working_dir: 'tf.estimator working directory',
*tf_record_dirs: 'Directories where holdout data are',
checkpoint_name: 'Which checkpoint to evaluate (None=latest)'=None,
validate_name: 'Name for validation set (i.e. selfplay or human)'=None):
tf_records = []
with timer("Building lists of holdout files"):
for record_dir in tf_record_dirs:
tf_records.extend(gfile.Glob(os.path.join(record_dir, '*.zz')))
with timer("Validating from {} to {}".format(os.path.basename(tf_records[0]),
os.path.basename(tf_records[-1]))):
dual_net.validate(working_dir, tf_records, checkpoint_name=checkpoint_name,
name=validate_name)
def evaluate(
black_model: 'The path to the model to play black',
white_model: 'The path to the model to play white',
output_dir: 'Where to write the evaluation results'='sgf/evaluate',
readouts: 'How many readouts to make per move.'=400,
games: 'the number of games to play'=16,
verbose: 'How verbose the players should be (see selfplay)' = 1):
_ensure_dir_exists(output_dir)
with timer("Loading weights"):
black_net = dual_net.DualNetwork(black_model)
white_net = dual_net.DualNetwork(white_model)
with timer("%d games" % games):
evaluation.play_match(
black_net, white_net, games, readouts, output_dir, verbose)
def selfplay(
load_file: "The path to the network model files",
output_dir: "Where to write the games"="data/selfplay",
holdout_dir: "Where to write the games"="data/holdout",
output_sgf: "Where to write the sgfs"="sgf/",
readouts: 'How many simulations to run per move'=100,
verbose: '>=2 will print debug info, >=3 will print boards' = 1,
resign_threshold: 'absolute value of threshold to resign at' = 0.95,
holdout_pct: 'how many games to hold out for validation' = 0.05):
clean_sgf = os.path.join(output_sgf, 'clean')
full_sgf = os.path.join(output_sgf, 'full')
_ensure_dir_exists(clean_sgf)
_ensure_dir_exists(full_sgf)
_ensure_dir_exists(output_dir)
_ensure_dir_exists(holdout_dir)
with timer("Loading weights from %s ... " % load_file):
network = dual_net.DualNetwork(load_file)
with timer("Playing game"):
player = selfplay_mcts.play(
network, readouts, resign_threshold, verbose)
output_name = '{}-{}'.format(int(time.time()), socket.gethostname())
game_data = player.extract_data()
with gfile.GFile(os.path.join(clean_sgf, '{}.sgf'.format(output_name)), 'w') as f:
f.write(player.to_sgf(use_comments=False))
with gfile.GFile(os.path.join(full_sgf, '{}.sgf'.format(output_name)), 'w') as f:
f.write(player.to_sgf())
tf_examples = preprocessing.make_dataset_from_selfplay(game_data)
# Hold out 5% of games for evaluation.
if random.random() < holdout_pct:
fname = os.path.join(holdout_dir, "{}.tfrecord.zz".format(output_name))
else:
fname = os.path.join(output_dir, "{}.tfrecord.zz".format(output_name))
preprocessing.write_tf_examples(fname, tf_examples)
def gather(
input_directory: 'where to look for games'='data/selfplay/',
output_directory: 'where to put collected games'='data/training_chunks/',
examples_per_record: 'how many tf.examples to gather in each chunk'=EXAMPLES_PER_RECORD):
_ensure_dir_exists(output_directory)
models = [model_dir.strip('/')
for model_dir in sorted(gfile.ListDirectory(input_directory))[-50:]]
with timer("Finding existing tfrecords..."):
model_gamedata = {
model: gfile.Glob(
os.path.join(input_directory, model, '*.tfrecord.zz'))
for model in models
}
print("Found %d models" % len(models))
for model_name, record_files in sorted(model_gamedata.items()):
print(" %s: %s files" % (model_name, len(record_files)))
meta_file = os.path.join(output_directory, 'meta.txt')
try:
with gfile.GFile(meta_file, 'r') as f:
already_processed = set(f.read().split())
except tf.errors.NotFoundError:
already_processed = set()
num_already_processed = len(already_processed)
for model_name, record_files in sorted(model_gamedata.items()):
if set(record_files) <= already_processed:
continue
print("Gathering files for %s:" % model_name)
for i, example_batch in enumerate(
tqdm(preprocessing.shuffle_tf_examples(examples_per_record, record_files))):
output_record = os.path.join(output_directory,
'{}-{}.tfrecord.zz'.format(model_name, str(i)))
preprocessing.write_tf_examples(
output_record, example_batch, serialize=False)
already_processed.update(record_files)
print("Processed %s new files" %
(len(already_processed) - num_already_processed))
with gfile.GFile(meta_file, 'w') as f:
f.write('\n'.join(sorted(already_processed)))
parser = argparse.ArgumentParser()
argh.add_commands(parser, [gtp, bootstrap, train,
selfplay, gather, evaluate, validate])
if __name__ == '__main__':
cloud_logging.configure()
argh.dispatch(parser)