-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathlead_nn_keras.py
191 lines (151 loc) · 6.59 KB
/
lead_nn_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import sys
import datetime
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models, optimizers, callbacks, initializers, losses
from tensorflow.keras.callbacks import Callback
from tensorflow.keras.models import load_model
from tensorflow.data import Dataset
import time
# Set logging level to suppress warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# Limit the number of CPU threads used
os.environ["OMP_NUM_THREADS"] = "32"
os.environ["MKL_NUM_THREADS"] = "32"
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
print("os.cpu_count()", os.cpu_count())
# TensorFlow thread settings
tf.config.threading.set_intra_op_parallelism_threads(32)
tf.config.threading.set_inter_op_parallelism_threads(32)
# Set TensorFlow to only allocate as much GPU memory as needed
physical_devices = tf.config.list_physical_devices('GPU')
print("physical_devices", physical_devices)
if physical_devices:
try:
for device in physical_devices:
print("set_memory_growth", device)
tf.config.experimental.set_memory_growth(device, True)
tf.config.set_visible_devices(physical_devices, 'GPU')
print("Using GPU: ", physical_devices)
except RuntimeError as e:
print(e)
else:
# Ensure TensorFlow uses only CPU
tf.config.set_visible_devices([], 'GPU')
print("Using CPU only")
# Check for correct usage
if len(sys.argv) < 2:
print("Usage: python lead_nn_keras.py inputdirectory name")
sys.exit(1)
bin_dir = sys.argv[1]
print(sys.argv)
system = "OpeningLead"
if len(sys.argv) > 2:
system = sys.argv[2]
X_train = np.load(os.path.join(bin_dir, 'x.npy'), mmap_mode='r')
B_train = np.load(os.path.join(bin_dir, 'B.npy'), mmap_mode='r')
y_train = np.load(os.path.join(bin_dir, 'y.npy'), mmap_mode='r')
n_examples = X_train.shape[0]
n_sequence = X_train.shape[1]
n_ftrs = X_train.shape[1]
n_cards = 32
n_bi = B_train.shape[1]
batch_size = 64
buffer_size = 5000
epochs = 200
learning_rate = 0.0005
keep = 0.6
steps_per_epoch = n_examples // batch_size
model_name = f'{system}_{datetime.datetime.now().strftime("%Y-%m-%d")}'
print("-------------------------")
print("Examples for training: ", n_examples)
print("Model path: ", model_name )
print("-------------------------")
print("Size input hand: ", n_ftrs)
print("Size input bidding: ", n_bi)
print("Number of Sequences: ", n_sequence)
print("Size output card: ", n_cards)
print("-------------------------")
print("dtype X_train: ", X_train.dtype)
print("dtype y_train: ", y_train.dtype)
print("dtype B_train: ", B_train.dtype)
print("-------------------------")
print("Batch size: ", batch_size)
print("buffer_size: ", buffer_size)
print("steps_per_epoch ", steps_per_epoch)
print("-------------------------")
print("Learning rate: ", learning_rate)
print("Keep: ", keep)
n_hidden_units = 512
n_layers = 3
# Build the model
def build_model(input_shape, n_bi, n_hidden_units, n_cards):
X_input = layers.Input(shape=(input_shape,), dtype=tf.float16, name='X_input')
B_input = layers.Input(shape=(n_bi,), dtype=tf.float16, name='B_input')
x = layers.Concatenate()([X_input, B_input])
for _ in range(n_layers):
x = layers.Dense(n_hidden_units, activation='relu', kernel_initializer=tf.keras.initializers.glorot_uniform(seed=1337))(x)
x = layers.Dropout(1-keep)(x)
# Define the output layer
lead_logit = layers.Dense(n_cards, name='lead_logit')(x)
lead_softmax = layers.Softmax(name='lead_softmax')(lead_logit)
model = models.Model(inputs=[X_input, B_input], outputs=lead_softmax)
model.compile(optimizer=optimizers.Adam(learning_rate=learning_rate), loss=losses.CategoricalCrossentropy(), metrics=['accuracy'])
print(model.summary())
# Create datasets
train_dataset = Dataset.from_tensor_slices(({'X_input': X_train, 'B_input': B_train}, y_train))
train_dataset = train_dataset.shuffle(buffer_size=buffer_size).batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE).repeat()
return model, train_dataset
print("Building model")
model, train_dataset = build_model(n_ftrs, n_bi, n_hidden_units, n_cards)
# Define the path to save model weights
checkpoint_dir = "model"
os.makedirs(checkpoint_dir, exist_ok=True)
# Load the latest saved model if it exists
initial_epoch = 0
# Check for existing checkpoints and set the initial epoch
checkpoints = sorted([f for f in os.listdir(checkpoint_dir) if f.endswith('.keras') and system in f])
if checkpoints:
latest_checkpoint = checkpoints[-1]
model_path = os.path.join(checkpoint_dir, latest_checkpoint)
initial_epoch = int(latest_checkpoint.split('-E')[1].split('.')[0]) + 1
print(f"Loading saved model from {model_path}, starting at epoch {initial_epoch+1}")
model = load_model(model_path)
epochs = epochs - initial_epoch
if not epochs > 0:
print("Model training complete after", initial_epoch, "epochs")
sys.exit(0)
initial_epoch += 1
# Define callbacks
class CustomModelCheckpoint(Callback):
def __init__(self, save_path, initial_epoch=0, **kwargs):
super().__init__(**kwargs)
self.save_path = save_path
self.initial_epoch = initial_epoch
self.t_start = None
def on_epoch_begin(self, epoch, logs=None):
# Start time of the epoch
self.t_start = time.time()
def on_epoch_end(self, epoch, logs=None):
save_path = self.save_path.format(epoch=epoch + self.initial_epoch)
print()
print(f"Saving model to {save_path}")
self.model.save(save_path)
epoch_duration = time.time() - self.t_start
print(f'Epoch took {epoch_duration:0.4f} seconds')
# Define the custom checkpoint callback
custom_checkpoint_callback = CustomModelCheckpoint(
save_path=os.path.join(checkpoint_dir, f"{model_name}-E{{epoch:03d}}.keras"),
initial_epoch=initial_epoch
)
early_stopping_callback = callbacks.EarlyStopping(monitor='loss', patience=10, verbose=1)
print("Training started")
# Training the model
model.fit(train_dataset, epochs=epochs, steps_per_epoch=steps_per_epoch,
callbacks=[custom_checkpoint_callback, early_stopping_callback])
# Save the final model with the last epoch number
final_epoch = initial_epoch + epochs -1
final_model_path = os.path.join(checkpoint_dir, f"{model_name}-E{(final_epoch):02d}.keras")
model.save(final_model_path)
print("Saved model:", final_model_path)