-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
132 lines (120 loc) · 4.58 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
from torch import nn
from torch.utils.data import Dataset, DataLoader
from predict import predict_generator, predict_generator_omni
from utils.general import LOGGER, save_as_csv
from compute_metric import eval_one_multithres
def evaluate(
model: nn.Module,
dataset: Dataset,
*,
timer: bool = False,
num_workers = 4,
evaluate_mask: bool = False,
conf: float = 0.25,
iou_thres: float = 0.2
):
# Initialize/load model and set device
model.eval()
valloader = DataLoader(dataset, batch_size=1, num_workers=num_workers)
pred_gen = predict_generator(
model,
valloader,
conf=conf,
iou_thres=iou_thres
)
results = {} # Type: Dict[str, Dict[str, float]], metrics (per-image) include: Precision Recall F1-score [time]
for filename_noext, mask, gt, imgtype, *_ in pred_gen:
r = eval_one_multithres(mask, gt.cpu().numpy())
results[filename_noext] = {
'precision_0.5': r[0, 0],
'recall_0.5': r[0, 1],
'f1_0.5': r[0, 2],
'precision': r[:, 0].mean(),
'recall': r[:, 1].mean(),
'f1': r[:, 2].mean(),
'imgtype': imgtype
}
return results
def evaluate_omni(
model: nn.Module,
dataset: Dataset,
*,
timer: bool = False,
num_workers = 4,
evaluate_mask: bool = False,
flow_threshold=0.4,
velocity=1
):
# Initialize/load model and set device
model.eval()
valloader = DataLoader(dataset, batch_size=1, num_workers=num_workers)
pred_gen = predict_generator_omni(
model,
valloader,
flow_threshold=flow_threshold,
velocity=velocity
)
results = {} # Type: Dict[str, Dict[str, float]], metrics (per-image) include: Precision Recall F1-score [time]
for filename_noext, mask, gt in pred_gen:
r = eval_one_multithres(mask, gt.cpu().numpy())
results[filename_noext] = {
'precision_0.5': r[0, 0],
'recall_0.5': r[0, 1],
'f1_0.5': r[0, 2],
'precision': r[:, 0].mean(),
'recall': r[:, 1].mean(),
'f1': r[:, 2].mean(),
# 'pa': (mask == gt).mean()
}
return results
def main(args):
from models.experimental import attempt_load
from utils.dataloaders import CellSegEvalDataset
model: nn.Module = attempt_load(args.ckpt, fuse=False).eval().cuda()
imageset = CellSegEvalDataset(args.input_path, args.overlap, True)
if args.omni:
results = evaluate_omni(model,
imageset,
evaluate_mask=args.mask, flow_threshold=args.flow, velocity=args.velo)
else:
results = evaluate(model,
imageset,
evaluate_mask=args.mask,
conf=args.conf,
iou_thres=args.iou_thres)
save_as_csv(args.output_path, results)
metrics = []
for r in results.values():
metrics.append(np.array([
r['precision_0.5'],
r['recall_0.5'],
r['f1_0.5'],
r['precision'],
r['recall'],
r['f1']
]))
metrics = np.stack(metrics, axis=0).mean(axis=0)
LOGGER.info('[email protected]: {:.5f} [email protected]: {:.5f} [email protected]: {:.5f}'.format(*metrics[:3]))
LOGGER.info('[email protected]:.95: {:.5f} [email protected]:.95: {:.5f} [email protected]:.95: {:.5f}'.format(*metrics[-3:]))
pass
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
# Dataset parameters
parser.add_argument('-i', '--input_path', default='./inputs', type=str, help='training data path; subfolders: images, labels')
parser.add_argument('-o', '--output_path', default='./outputs/results.csv', type=str, help='output filename')
parser.add_argument('--ckpt', default=None, required=True)
# Model parameters
parser.add_argument('--input_size', default=640, type=int, help='segmentation classes')
parser.add_argument('--overlap', default=0.125, type=float, help='overlap factor')
parser.add_argument('--conf', default=0.15, type=float, help='overlap factor')
parser.add_argument('--iou_thres', default=0.2, type=float, help='overlap factor')
parser.add_argument('--flow', default=0.4, type=float, help='overlap factor')
parser.add_argument('--velo', default=1, type=float, help='overlap factor')
parser.add_argument('--mask', default=False, action='store_true')
parser.add_argument('--omni', default=False, action='store_true')
args = parser.parse_args()
import os
os.makedirs(os.path.split(args.output_path)[0], exist_ok=True)
main(args)