forked from alibaba/EasyCV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththreeaug_imagenet_classification_192.py
62 lines (59 loc) · 1.92 KB
/
threeaug_imagenet_classification_192.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
data_train_list = 'data/imagenet1k/train.txt'
data_train_root = 'data/imagenet1k/train/'
data_test_list = 'data/imagenet1k/val.txt'
data_test_root = 'data/imagenet1k/val/'
dataset_type = 'ClsDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
three_augment_policies = [[
dict(type='PILGaussianBlur', prob=1.0, radius_min=0.1, radius_max=2.0),
], [
dict(type='Solarization', threshold=128),
], [
dict(type='Grayscale', num_output_channels=3),
]]
train_pipeline = [
dict(
type='RandomResizedCrop', size=192, scale=(0.08, 1.0),
interpolation=3), # interpolation='bicubic'
dict(type='RandomHorizontalFlip'),
dict(type='MMAutoAugment', policies=three_augment_policies),
dict(type='ColorJitter', brightness=0.3, contrast=0.3, saturation=0.3),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
size = int((256 / 224) * 192)
test_pipeline = [
dict(type='Resize', size=size, interpolation=3),
dict(type='CenterCrop', size=192),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
data = dict(
imgs_per_gpu=256,
workers_per_gpu=8,
use_repeated_augment_sampler=True,
train=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list,
root=data_train_root,
type='ClsSourceImageList'),
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_source=dict(
list_file=data_test_list,
root=data_test_root,
type='ClsSourceImageList'),
pipeline=test_pipeline))
eval_config = dict(initial=True, interval=1, gpu_collect=True)
eval_pipelines = [
dict(
mode='test',
data=data['val'],
dist_eval=True,
evaluators=[dict(type='ClsEvaluator', topk=(1, 5))],
)
]