-
-
Notifications
You must be signed in to change notification settings - Fork 773
/
Copy pathconfigs.py
181 lines (143 loc) · 6.01 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import json
from pydantic import BaseModel, validator, root_validator
from typing import List, Iterable, Optional, Union, Tuple, Dict, Any
from enum import Enum
from imagen_pytorch.imagen_pytorch import Imagen, Unet, Unet3D, NullUnet
from imagen_pytorch.trainer import ImagenTrainer
from imagen_pytorch.elucidated_imagen import ElucidatedImagen
from imagen_pytorch.t5 import DEFAULT_T5_NAME, get_encoded_dim
# helper functions
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def ListOrTuple(inner_type):
return Union[List[inner_type], Tuple[inner_type]]
def SingleOrList(inner_type):
return Union[inner_type, ListOrTuple(inner_type)]
# noise schedule
class NoiseSchedule(Enum):
cosine = 'cosine'
linear = 'linear'
class AllowExtraBaseModel(BaseModel):
class Config:
extra = "allow"
use_enum_values = True
# imagen pydantic classes
class NullUnetConfig(BaseModel):
is_null: bool
def create(self):
return NullUnet()
class UnetConfig(AllowExtraBaseModel):
dim: int
dim_mults: ListOrTuple(int)
text_embed_dim: int = get_encoded_dim(DEFAULT_T5_NAME)
cond_dim: int = None
channels: int = 3
attn_dim_head: int = 32
attn_heads: int = 16
def create(self):
return Unet(**self.dict())
class Unet3DConfig(AllowExtraBaseModel):
dim: int
dim_mults: ListOrTuple(int)
text_embed_dim: int = get_encoded_dim(DEFAULT_T5_NAME)
cond_dim: int = None
channels: int = 3
attn_dim_head: int = 32
attn_heads: int = 16
def create(self):
return Unet3D(**self.dict())
class ImagenConfig(AllowExtraBaseModel):
unets: ListOrTuple(Union[UnetConfig, Unet3DConfig, NullUnetConfig])
image_sizes: ListOrTuple(int)
video: bool = False
timesteps: SingleOrList(int) = 1000
noise_schedules: SingleOrList(NoiseSchedule) = 'cosine'
text_encoder_name: str = DEFAULT_T5_NAME
channels: int = 3
loss_type: str = 'l2'
cond_drop_prob: float = 0.5
@validator('image_sizes')
def check_image_sizes(cls, image_sizes, values):
unets = values.get('unets')
if len(image_sizes) != len(unets):
raise ValueError(f'image sizes length {len(image_sizes)} must be equivalent to the number of unets {len(unets)}')
return image_sizes
def create(self):
decoder_kwargs = self.dict()
unets_kwargs = decoder_kwargs.pop('unets')
is_video = decoder_kwargs.pop('video', False)
unets = []
for unet, unet_kwargs in zip(self.unets, unets_kwargs):
if isinstance(unet, NullUnetConfig):
unet_klass = NullUnet
elif is_video:
unet_klass = Unet3D
else:
unet_klass = Unet
unets.append(unet_klass(**unet_kwargs))
imagen = Imagen(unets, **decoder_kwargs)
imagen._config = self.dict().copy()
return imagen
class ElucidatedImagenConfig(AllowExtraBaseModel):
unets: ListOrTuple(Union[UnetConfig, Unet3DConfig, NullUnetConfig])
image_sizes: ListOrTuple(int)
video: bool = False
text_encoder_name: str = DEFAULT_T5_NAME
channels: int = 3
cond_drop_prob: float = 0.5
num_sample_steps: SingleOrList(int) = 32
sigma_min: SingleOrList(float) = 0.002
sigma_max: SingleOrList(int) = 80
sigma_data: SingleOrList(float) = 0.5
rho: SingleOrList(int) = 7
P_mean: SingleOrList(float) = -1.2
P_std: SingleOrList(float) = 1.2
S_churn: SingleOrList(int) = 80
S_tmin: SingleOrList(float) = 0.05
S_tmax: SingleOrList(int) = 50
S_noise: SingleOrList(float) = 1.003
@validator('image_sizes')
def check_image_sizes(cls, image_sizes, values):
unets = values.get('unets')
if len(image_sizes) != len(unets):
raise ValueError(f'image sizes length {len(image_sizes)} must be equivalent to the number of unets {len(unets)}')
return image_sizes
def create(self):
decoder_kwargs = self.dict()
unets_kwargs = decoder_kwargs.pop('unets')
is_video = decoder_kwargs.pop('video', False)
unet_klass = Unet3D if is_video else Unet
unets = []
for unet, unet_kwargs in zip(self.unets, unets_kwargs):
if isinstance(unet, NullUnetConfig):
unet_klass = NullUnet
elif is_video:
unet_klass = Unet3D
else:
unet_klass = Unet
unets.append(unet_klass(**unet_kwargs))
imagen = ElucidatedImagen(unets, **decoder_kwargs)
imagen._config = self.dict().copy()
return imagen
class ImagenTrainerConfig(AllowExtraBaseModel):
imagen: dict
elucidated: bool = False
video: bool = False
use_ema: bool = True
lr: SingleOrList(float) = 1e-4
eps: SingleOrList(float) = 1e-8
beta1: float = 0.9
beta2: float = 0.99
max_grad_norm: Optional[float] = None
group_wd_params: bool = True
warmup_steps: SingleOrList(Optional[int]) = None
cosine_decay_max_steps: SingleOrList(Optional[int]) = None
def create(self):
trainer_kwargs = self.dict()
imagen_config = trainer_kwargs.pop('imagen')
elucidated = trainer_kwargs.pop('elucidated')
imagen_config_klass = ElucidatedImagenConfig if elucidated else ImagenConfig
imagen = imagen_config_klass(**{**imagen_config, 'video': video}).create()
return ImagenTrainer(imagen, **trainer_kwargs)