-
-
Notifications
You must be signed in to change notification settings - Fork 773
/
Copy pathtrainer.py
969 lines (687 loc) · 32 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
import os
import time
import copy
from pathlib import Path
from math import ceil
from contextlib import contextmanager, nullcontext
from functools import partial, wraps
from collections.abc import Iterable
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import random_split, DataLoader
from torch.optim import Adam
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR
from torch.cuda.amp import autocast, GradScaler
import pytorch_warmup as warmup
from imagen_pytorch.imagen_pytorch import Imagen, NullUnet
from imagen_pytorch.elucidated_imagen import ElucidatedImagen
from imagen_pytorch.data import cycle
from imagen_pytorch.version import __version__
from packaging import version
import numpy as np
from ema_pytorch import EMA
from accelerate import Accelerator, DistributedType, DistributedDataParallelKwargs
from fsspec.core import url_to_fs
from fsspec.implementations.local import LocalFileSystem
# helper functions
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
def cast_tuple(val, length = 1):
if isinstance(val, list):
val = tuple(val)
return val if isinstance(val, tuple) else ((val,) * length)
def find_first(fn, arr):
for ind, el in enumerate(arr):
if fn(el):
return ind
return -1
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
def num_to_groups(num, divisor):
groups = num // divisor
remainder = num % divisor
arr = [divisor] * groups
if remainder > 0:
arr.append(remainder)
return arr
# url to fs, bucket, path - for checkpointing to cloud
def url_to_bucket(url):
if '://' not in url:
return url
_, suffix = url.split('://')
if prefix in {'gs', 's3'}:
return suffix.split('/')[0]
else:
raise ValueError(f'storage type prefix "{prefix}" is not supported yet')
# decorators
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
def cast_torch_tensor(fn, cast_fp16 = False):
@wraps(fn)
def inner(model, *args, **kwargs):
device = kwargs.pop('_device', model.device)
cast_device = kwargs.pop('_cast_device', True)
should_cast_fp16 = cast_fp16 and model.cast_half_at_training
kwargs_keys = kwargs.keys()
all_args = (*args, *kwargs.values())
split_kwargs_index = len(all_args) - len(kwargs_keys)
all_args = tuple(map(lambda t: torch.from_numpy(t) if exists(t) and isinstance(t, np.ndarray) else t, all_args))
if cast_device:
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
if should_cast_fp16:
all_args = tuple(map(lambda t: t.half() if exists(t) and isinstance(t, torch.Tensor) and t.dtype != torch.bool else t, all_args))
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
out = fn(model, *args, **kwargs)
return out
return inner
# gradient accumulation functions
def split_iterable(it, split_size):
accum = []
for ind in range(ceil(len(it) / split_size)):
start_index = ind * split_size
accum.append(it[start_index: (start_index + split_size)])
return accum
def split(t, split_size = None):
if not exists(split_size):
return t
if isinstance(t, torch.Tensor):
return t.split(split_size, dim = 0)
if isinstance(t, Iterable):
return split_iterable(t, split_size)
return TypeError
def find_first(cond, arr):
for el in arr:
if cond(el):
return el
return None
def split_args_and_kwargs(*args, split_size = None, **kwargs):
all_args = (*args, *kwargs.values())
len_all_args = len(all_args)
first_tensor = find_first(lambda t: isinstance(t, torch.Tensor), all_args)
assert exists(first_tensor)
batch_size = len(first_tensor)
split_size = default(split_size, batch_size)
num_chunks = ceil(batch_size / split_size)
dict_len = len(kwargs)
dict_keys = kwargs.keys()
split_kwargs_index = len_all_args - dict_len
split_all_args = [split(arg, split_size = split_size) if exists(arg) and isinstance(arg, (torch.Tensor, Iterable)) else ((arg,) * num_chunks) for arg in all_args]
chunk_sizes = tuple(map(len, split_all_args[0]))
for (chunk_size, *chunked_all_args) in tuple(zip(chunk_sizes, *split_all_args)):
chunked_args, chunked_kwargs_values = chunked_all_args[:split_kwargs_index], chunked_all_args[split_kwargs_index:]
chunked_kwargs = dict(tuple(zip(dict_keys, chunked_kwargs_values)))
chunk_size_frac = chunk_size / batch_size
yield chunk_size_frac, (chunked_args, chunked_kwargs)
# imagen trainer
def imagen_sample_in_chunks(fn):
@wraps(fn)
def inner(self, *args, max_batch_size = None, **kwargs):
if not exists(max_batch_size):
return fn(self, *args, **kwargs)
if self.imagen.unconditional:
batch_size = kwargs.get('batch_size')
batch_sizes = num_to_groups(batch_size, max_batch_size)
outputs = [fn(self, *args, **{**kwargs, 'batch_size': sub_batch_size}) for sub_batch_size in batch_sizes]
else:
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
if isinstance(outputs[0], torch.Tensor):
return torch.cat(outputs, dim = 0)
return list(map(lambda t: torch.cat(t, dim = 0), list(zip(*outputs))))
return inner
def restore_parts(state_dict_target, state_dict_from):
for name, param in state_dict_from.items():
if name not in state_dict_target:
continue
if param.size() == state_dict_target[name].size():
state_dict_target[name].copy_(param)
else:
print(f"layer {name}({param.size()} different than target: {state_dict_target[name].size()}")
return state_dict_target
class ImagenTrainer(nn.Module):
locked = False
def __init__(
self,
imagen = None,
imagen_checkpoint_path = None,
use_ema = True,
lr = 1e-4,
eps = 1e-8,
beta1 = 0.9,
beta2 = 0.99,
max_grad_norm = None,
group_wd_params = True,
warmup_steps = None,
cosine_decay_max_steps = None,
only_train_unet_number = None,
fp16 = False,
precision = None,
split_batches = True,
dl_tuple_output_keywords_names = ('images', 'text_embeds', 'text_masks', 'cond_images'),
verbose = True,
split_valid_fraction = 0.025,
split_valid_from_train = False,
split_random_seed = 42,
checkpoint_path = None,
checkpoint_every = None,
checkpoint_fs = None,
fs_kwargs: dict = None,
max_checkpoints_keep = 20,
**kwargs
):
super().__init__()
assert not ImagenTrainer.locked, 'ImagenTrainer can only be initialized once per process - for the sake of distributed training, you will now have to create a separate script to train each unet (or a script that accepts unet number as an argument)'
assert exists(imagen) ^ exists(imagen_checkpoint_path), 'either imagen instance is passed into the trainer, or a checkpoint path that contains the imagen config'
# determine filesystem, using fsspec, for saving to local filesystem or cloud
self.fs = checkpoint_fs
if not exists(self.fs):
fs_kwargs = default(fs_kwargs, {})
self.fs, _ = url_to_fs(default(checkpoint_path, './'), **fs_kwargs)
assert isinstance(imagen, (Imagen, ElucidatedImagen))
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
# elucidated or not
self.is_elucidated = isinstance(imagen, ElucidatedImagen)
# create accelerator instance
accelerate_kwargs, kwargs = groupby_prefix_and_trim('accelerate_', kwargs)
assert not (fp16 and exists(precision)), 'either set fp16 = True or forward the precision ("fp16", "bf16") to Accelerator'
accelerator_mixed_precision = default(precision, 'fp16' if fp16 else 'no')
self.accelerator = Accelerator(**{
'split_batches': split_batches,
'mixed_precision': accelerator_mixed_precision,
'kwargs_handlers': [DistributedDataParallelKwargs(find_unused_parameters = True)]
, **accelerate_kwargs})
ImagenTrainer.locked = self.is_distributed
# cast data to fp16 at training time if needed
self.cast_half_at_training = accelerator_mixed_precision == 'fp16'
# grad scaler must be managed outside of accelerator
grad_scaler_enabled = fp16
# imagen, unets and ema unets
self.imagen = imagen
self.num_unets = len(self.imagen.unets)
self.use_ema = use_ema and self.is_main
self.ema_unets = nn.ModuleList([])
# keep track of what unet is being trained on
# only going to allow 1 unet training at a time
self.ema_unet_being_trained_index = -1 # keeps track of which ema unet is being trained on
# data related functions
self.train_dl_iter = None
self.train_dl = None
self.valid_dl_iter = None
self.valid_dl = None
self.dl_tuple_output_keywords_names = dl_tuple_output_keywords_names
# auto splitting validation from training, if dataset is passed in
self.split_valid_from_train = split_valid_from_train
assert 0 <= split_valid_fraction <= 1, 'split valid fraction must be between 0 and 1'
self.split_valid_fraction = split_valid_fraction
self.split_random_seed = split_random_seed
# be able to finely customize learning rate, weight decay
# per unet
lr, eps, warmup_steps, cosine_decay_max_steps = map(partial(cast_tuple, length = self.num_unets), (lr, eps, warmup_steps, cosine_decay_max_steps))
for ind, (unet, unet_lr, unet_eps, unet_warmup_steps, unet_cosine_decay_max_steps) in enumerate(zip(self.imagen.unets, lr, eps, warmup_steps, cosine_decay_max_steps)):
optimizer = Adam(
unet.parameters(),
lr = unet_lr,
eps = unet_eps,
betas = (beta1, beta2),
**kwargs
)
if self.use_ema:
self.ema_unets.append(EMA(unet, **ema_kwargs))
scaler = GradScaler(enabled = grad_scaler_enabled)
scheduler = warmup_scheduler = None
if exists(unet_cosine_decay_max_steps):
scheduler = CosineAnnealingLR(optimizer, T_max = unet_cosine_decay_max_steps)
if exists(unet_warmup_steps):
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps)
if not exists(scheduler):
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
# set on object
setattr(self, f'optim{ind}', optimizer) # cannot use pytorch ModuleList for some reason with optimizers
setattr(self, f'scaler{ind}', scaler)
setattr(self, f'scheduler{ind}', scheduler)
setattr(self, f'warmup{ind}', warmup_scheduler)
# gradient clipping if needed
self.max_grad_norm = max_grad_norm
# step tracker and misc
self.register_buffer('steps', torch.tensor([0] * self.num_unets))
self.verbose = verbose
# automatic set devices based on what accelerator decided
self.imagen.to(self.device)
self.to(self.device)
# checkpointing
assert not (exists(checkpoint_path) ^ exists(checkpoint_every))
self.checkpoint_path = checkpoint_path
self.checkpoint_every = checkpoint_every
self.max_checkpoints_keep = max_checkpoints_keep
self.can_checkpoint = self.is_local_main if isinstance(checkpoint_fs, LocalFileSystem) else self.is_main
if exists(checkpoint_path) and self.can_checkpoint:
bucket = url_to_bucket(checkpoint_path)
if not self.fs.exists(bucket):
self.fs.mkdir(bucket)
self.load_from_checkpoint_folder()
# only allowing training for unet
self.only_train_unet_number = only_train_unet_number
self.validate_and_set_unet_being_trained(only_train_unet_number)
# computed values
@property
def device(self):
return self.accelerator.device
@property
def is_distributed(self):
return not (self.accelerator.distributed_type == DistributedType.NO and self.accelerator.num_processes == 1)
@property
def is_main(self):
return self.accelerator.is_main_process
@property
def is_local_main(self):
return self.accelerator.is_local_main_process
@property
def unwrapped_unet(self):
return self.accelerator.unwrap_model(self.unet_being_trained)
# optimizer helper functions
def get_lr(self, unet_number):
self.validate_unet_number(unet_number)
unet_index = unet_number - 1
optim = getattr(self, f'optim{unet_index}')
return optim.param_groups[0]['lr']
# function for allowing only one unet from being trained at a time
def validate_and_set_unet_being_trained(self, unet_number = None):
if exists(unet_number):
self.validate_unet_number(unet_number)
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, 'you cannot only train on one unet at a time. you will need to save the trainer into a checkpoint, and resume training on a new unet'
self.only_train_unet_number = unet_number
self.imagen.only_train_unet_number = unet_number
if not exists(unet_number):
return
self.wrap_unet(unet_number)
def wrap_unet(self, unet_number):
if hasattr(self, 'one_unet_wrapped'):
return
unet = self.imagen.get_unet(unet_number)
self.unet_being_trained = self.accelerator.prepare(unet)
unet_index = unet_number - 1
optimizer = getattr(self, f'optim{unet_index}')
scheduler = getattr(self, f'scheduler{unet_index}')
optimizer = self.accelerator.prepare(optimizer)
if exists(scheduler):
scheduler = self.accelerator.prepare(scheduler)
setattr(self, f'optim{unet_index}', optimizer)
setattr(self, f'scheduler{unet_index}', scheduler)
self.one_unet_wrapped = True
# hacking accelerator due to not having separate gradscaler per optimizer
def set_accelerator_scaler(self, unet_number):
unet_number = self.validate_unet_number(unet_number)
scaler = getattr(self, f'scaler{unet_number - 1}')
self.accelerator.scaler = scaler
for optimizer in self.accelerator._optimizers:
optimizer.scaler = scaler
# helper print
def print(self, msg):
if not self.is_main:
return
if not self.verbose:
return
return self.accelerator.print(msg)
# validating the unet number
def validate_unet_number(self, unet_number = None):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
assert 0 < unet_number <= self.num_unets, f'unet number should be in between 1 and {self.num_unets}'
return unet_number
# number of training steps taken
def num_steps_taken(self, unet_number = None):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
return self.steps[unet_number - 1].item()
def print_untrained_unets(self):
print_final_error = False
for ind, (steps, unet) in enumerate(zip(self.steps.tolist(), self.imagen.unets)):
if steps > 0 or isinstance(unet, NullUnet):
continue
self.print(f'unet {ind + 1} has not been trained')
print_final_error = True
if print_final_error:
self.print('when sampling, you can pass stop_at_unet_number to stop early in the cascade, so it does not try to generate with untrained unets')
# data related functions
def add_train_dataloader(self, dl = None):
if not exists(dl):
return
assert not exists(self.train_dl), 'training dataloader was already added'
self.train_dl = self.accelerator.prepare(dl)
def add_valid_dataloader(self, dl):
if not exists(dl):
return
assert not exists(self.valid_dl), 'validation dataloader was already added'
self.valid_dl = self.accelerator.prepare(dl)
def add_train_dataset(self, ds = None, *, batch_size, **dl_kwargs):
if not exists(ds):
return
assert not exists(self.train_dl), 'training dataloader was already added'
valid_ds = None
if self.split_valid_from_train:
train_size = int((1 - self.split_valid_fraction) * len(ds))
valid_size = len(ds) - train_size
ds, valid_ds = random_split(ds, [train_size, valid_size], generator = torch.Generator().manual_seed(self.split_random_seed))
self.print(f'training with dataset of {len(ds)} samples and validating with randomly splitted {len(valid_ds)} samples')
dl = DataLoader(ds, batch_size = batch_size, **dl_kwargs)
self.train_dl = self.accelerator.prepare(dl)
if not self.split_valid_from_train:
return
self.add_valid_dataset(valid_ds, batch_size = batch_size, **dl_kwargs)
def add_valid_dataset(self, ds, *, batch_size, **dl_kwargs):
if not exists(ds):
return
assert not exists(self.valid_dl), 'validation dataloader was already added'
dl = DataLoader(ds, batch_size = batch_size, **dl_kwargs)
self.valid_dl = self.accelerator.prepare(dl)
def create_train_iter(self):
assert exists(self.train_dl), 'training dataloader has not been registered with the trainer yet'
if exists(self.train_dl_iter):
return
self.train_dl_iter = cycle(self.train_dl)
def create_valid_iter(self):
assert exists(self.valid_dl), 'validation dataloader has not been registered with the trainer yet'
if exists(self.valid_dl_iter):
return
self.valid_dl_iter = cycle(self.valid_dl)
def train_step(self, unet_number = None, **kwargs):
self.create_train_iter()
loss = self.step_with_dl_iter(self.train_dl_iter, unet_number = unet_number, **kwargs)
self.update(unet_number = unet_number)
return loss
@torch.no_grad()
@eval_decorator
def valid_step(self, **kwargs):
self.create_valid_iter()
context = self.use_ema_unets if kwargs.pop('use_ema_unets', False) else nullcontext
with context():
loss = self.step_with_dl_iter(self.valid_dl_iter, **kwargs)
return loss
def step_with_dl_iter(self, dl_iter, **kwargs):
dl_tuple_output = cast_tuple(next(dl_iter))
model_input = dict(list(zip(self.dl_tuple_output_keywords_names, dl_tuple_output)))
loss = self.forward(**{**kwargs, **model_input})
return loss
# checkpointing functions
@property
def all_checkpoints_sorted(self):
glob_pattern = os.path.join(self.checkpoint_path, '*.pt')
checkpoints = self.fs.glob(glob_pattern)
sorted_checkpoints = sorted(checkpoints, key = lambda x: int(str(x).split('.')[-2]), reverse = True)
return sorted_checkpoints
def load_from_checkpoint_folder(self, last_total_steps = -1):
if last_total_steps != -1:
filepath = os.path.join(self.checkpoint_path, f'checkpoint.{last_total_steps}.pt')
self.load(filepath)
return
sorted_checkpoints = self.all_checkpoints_sorted
if len(sorted_checkpoints) == 0:
self.print(f'no checkpoints found to load from at {self.checkpoint_path}')
return
last_checkpoint = sorted_checkpoints[0]
self.load(last_checkpoint)
def save_to_checkpoint_folder(self):
self.accelerator.wait_for_everyone()
if not self.can_checkpoint:
return
total_steps = int(self.steps.sum().item())
filepath = os.path.join(self.checkpoint_path, f'checkpoint.{total_steps}.pt')
self.save(filepath)
if self.max_checkpoints_keep <= 0:
return
sorted_checkpoints = self.all_checkpoints_sorted
checkpoints_to_discard = sorted_checkpoints[self.max_checkpoints_keep:]
for checkpoint in checkpoints_to_discard:
self.fs.rm(checkpoint)
# saving and loading functions
def save(
self,
path,
overwrite = True,
without_optim_and_sched = False,
**kwargs
):
self.accelerator.wait_for_everyone()
if not self.can_checkpoint:
return
fs = self.fs
assert not (fs.exists(path) and not overwrite)
self.reset_ema_unets_all_one_device()
save_obj = dict(
model = self.imagen.state_dict(),
version = __version__,
steps = self.steps.cpu(),
**kwargs
)
save_optim_and_sched_iter = range(0, self.num_unets) if not without_optim_and_sched else tuple()
for ind in save_optim_and_sched_iter:
scaler_key = f'scaler{ind}'
optimizer_key = f'optim{ind}'
scheduler_key = f'scheduler{ind}'
warmup_scheduler_key = f'warmup{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
scheduler = getattr(self, scheduler_key)
warmup_scheduler = getattr(self, warmup_scheduler_key)
if exists(scheduler):
save_obj = {**save_obj, scheduler_key: scheduler.state_dict()}
if exists(warmup_scheduler):
save_obj = {**save_obj, warmup_scheduler_key: warmup_scheduler.state_dict()}
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
# determine if imagen config is available
if hasattr(self.imagen, '_config'):
self.print(f'this checkpoint is commandable from the CLI - "imagen --model {str(path)} \"<prompt>\""')
save_obj = {
**save_obj,
'imagen_type': 'elucidated' if self.is_elucidated else 'original',
'imagen_params': self.imagen._config
}
#save to path
with fs.open(path, 'wb') as f:
torch.save(save_obj, f)
self.print(f'checkpoint saved to {path}')
def load(self, path, only_model = False, strict = True, noop_if_not_exist = False):
fs = self.fs
if noop_if_not_exist and not fs.exists(path):
self.print(f'trainer checkpoint not found at {str(path)}')
return
assert fs.exists(path), f'{path} does not exist'
self.reset_ema_unets_all_one_device()
# to avoid extra GPU memory usage in main process when using Accelerate
with fs.open(path) as f:
loaded_obj = torch.load(f, map_location='cpu')
if version.parse(__version__) != version.parse(loaded_obj['version']):
self.print(f'loading saved imagen at version {loaded_obj["version"]}, but current package version is {__version__}')
try:
self.imagen.load_state_dict(loaded_obj['model'], strict = strict)
except RuntimeError:
print("Failed loading state dict. Trying partial load")
self.imagen.load_state_dict(restore_parts(self.imagen.state_dict(),
loaded_obj['model']))
if only_model:
return loaded_obj
self.steps.copy_(loaded_obj['steps'])
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'optim{ind}'
scheduler_key = f'scheduler{ind}'
warmup_scheduler_key = f'warmup{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
scheduler = getattr(self, scheduler_key)
warmup_scheduler = getattr(self, warmup_scheduler_key)
if exists(scheduler) and scheduler_key in loaded_obj:
scheduler.load_state_dict(loaded_obj[scheduler_key])
if exists(warmup_scheduler) and warmup_scheduler_key in loaded_obj:
warmup_scheduler.load_state_dict(loaded_obj[warmup_scheduler_key])
if exists(optimizer):
try:
optimizer.load_state_dict(loaded_obj[optimizer_key])
scaler.load_state_dict(loaded_obj[scaler_key])
except:
self.print('could not load optimizer and scaler, possibly because you have turned on mixed precision training since the last run. resuming with new optimizer and scalers')
if self.use_ema:
assert 'ema' in loaded_obj
try:
self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict)
except RuntimeError:
print("Failed loading state dict. Trying partial load")
self.ema_unets.load_state_dict(restore_parts(self.ema_unets.state_dict(),
loaded_obj['ema']))
self.print(f'checkpoint loaded from {path}')
return loaded_obj
# managing ema unets and their devices
@property
def unets(self):
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
def get_ema_unet(self, unet_number = None):
if not self.use_ema:
return
unet_number = self.validate_unet_number(unet_number)
index = unet_number - 1
if isinstance(self.unets, nn.ModuleList):
unets_list = [unet for unet in self.ema_unets]
delattr(self, 'ema_unets')
self.ema_unets = unets_list
if index != self.ema_unet_being_trained_index:
for unet_index, unet in enumerate(self.ema_unets):
unet.to(self.device if unet_index == index else 'cpu')
self.ema_unet_being_trained_index = index
return self.ema_unets[index]
def reset_ema_unets_all_one_device(self, device = None):
if not self.use_ema:
return
device = default(device, self.device)
self.ema_unets = nn.ModuleList([*self.ema_unets])
self.ema_unets.to(device)
self.ema_unet_being_trained_index = -1
@torch.no_grad()
@contextmanager
def use_ema_unets(self):
if not self.use_ema:
output = yield
return output
self.reset_ema_unets_all_one_device()
self.imagen.reset_unets_all_one_device()
self.unets.eval()
trainable_unets = self.imagen.unets
self.imagen.unets = self.unets # swap in exponential moving averaged unets for sampling
output = yield
self.imagen.unets = trainable_unets # restore original training unets
# cast the ema_model unets back to original device
for ema in self.ema_unets:
ema.restore_ema_model_device()
return output
def print_unet_devices(self):
self.print('unet devices:')
for i, unet in enumerate(self.imagen.unets):
device = next(unet.parameters()).device
self.print(f'\tunet {i}: {device}')
if not self.use_ema:
return
self.print('\nema unet devices:')
for i, ema_unet in enumerate(self.ema_unets):
device = next(ema_unet.parameters()).device
self.print(f'\tema unet {i}: {device}')
# overriding state dict functions
def state_dict(self, *args, **kwargs):
self.reset_ema_unets_all_one_device()
return super().state_dict(*args, **kwargs)
def load_state_dict(self, *args, **kwargs):
self.reset_ema_unets_all_one_device()
return super().load_state_dict(*args, **kwargs)
# encoding text functions
def encode_text(self, text, **kwargs):
return self.imagen.encode_text(text, **kwargs)
# forwarding functions and gradient step updates
def update(self, unet_number = None):
unet_number = self.validate_unet_number(unet_number)
self.validate_and_set_unet_being_trained(unet_number)
self.set_accelerator_scaler(unet_number)
index = unet_number - 1
unet = self.unet_being_trained
optimizer = getattr(self, f'optim{index}')
scaler = getattr(self, f'scaler{index}')
scheduler = getattr(self, f'scheduler{index}')
warmup_scheduler = getattr(self, f'warmup{index}')
# set the grad scaler on the accelerator, since we are managing one per u-net
if exists(self.max_grad_norm):
self.accelerator.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
if self.use_ema:
ema_unet = self.get_ema_unet(unet_number)
ema_unet.update()
# scheduler, if needed
maybe_warmup_context = nullcontext() if not exists(warmup_scheduler) else warmup_scheduler.dampening()
with maybe_warmup_context:
if exists(scheduler) and not self.accelerator.optimizer_step_was_skipped: # recommended in the docs
scheduler.step()
self.steps += F.one_hot(torch.tensor(unet_number - 1, device = self.steps.device), num_classes = len(self.steps))
if not exists(self.checkpoint_path):
return
total_steps = int(self.steps.sum().item())
if total_steps % self.checkpoint_every:
return
self.save_to_checkpoint_folder()
@torch.no_grad()
@cast_torch_tensor
@imagen_sample_in_chunks
def sample(self, *args, **kwargs):
context = nullcontext if kwargs.pop('use_non_ema', False) else self.use_ema_unets
self.print_untrained_unets()
if not self.is_main:
kwargs['use_tqdm'] = False
with context():
output = self.imagen.sample(*args, device = self.device, **kwargs)
return output
@partial(cast_torch_tensor, cast_fp16 = True)
def forward(
self,
*args,
unet_number = None,
max_batch_size = None,
**kwargs
):
unet_number = self.validate_unet_number(unet_number)
self.validate_and_set_unet_being_trained(unet_number)
self.set_accelerator_scaler(unet_number)
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, f'you can only train unet #{self.only_train_unet_number}'
total_loss = 0.
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
with self.accelerator.autocast():
loss = self.imagen(*chunked_args, unet = self.unet_being_trained, unet_number = unet_number, **chunked_kwargs)
loss = loss * chunk_size_frac
total_loss += loss.item()
if self.training:
self.accelerator.backward(loss)
return total_loss