-
-
Notifications
You must be signed in to change notification settings - Fork 3.2k
/
Copy pathnormalized_vit.py
264 lines (193 loc) · 6.83 KB
/
normalized_vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import torch
from torch import nn
from torch.nn import Module, ModuleList
import torch.nn.functional as F
import torch.nn.utils.parametrize as parametrize
from einops import rearrange, reduce
from einops.layers.torch import Rearrange
# functions
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def divisible_by(numer, denom):
return (numer % denom) == 0
def l2norm(t, dim = -1):
return F.normalize(t, dim = dim, p = 2)
# for use with parametrize
class L2Norm(Module):
def __init__(self, dim = -1):
super().__init__()
self.dim = dim
def forward(self, t):
return l2norm(t, dim = self.dim)
class NormLinear(Module):
def __init__(
self,
dim,
dim_out,
norm_dim_in = True
):
super().__init__()
self.linear = nn.Linear(dim, dim_out, bias = False)
parametrize.register_parametrization(
self.linear,
'weight',
L2Norm(dim = -1 if norm_dim_in else 0)
)
@property
def weight(self):
return self.linear.weight
def forward(self, x):
return self.linear(x)
# attention and feedforward
class Attention(Module):
def __init__(
self,
dim,
*,
dim_head = 64,
heads = 8,
dropout = 0.
):
super().__init__()
dim_inner = dim_head * heads
self.to_q = NormLinear(dim, dim_inner)
self.to_k = NormLinear(dim, dim_inner)
self.to_v = NormLinear(dim, dim_inner)
self.dropout = dropout
self.q_scale = nn.Parameter(torch.ones(heads, 1, dim_head) * (dim_head ** 0.25))
self.k_scale = nn.Parameter(torch.ones(heads, 1, dim_head) * (dim_head ** 0.25))
self.split_heads = Rearrange('b n (h d) -> b h n d', h = heads)
self.merge_heads = Rearrange('b h n d -> b n (h d)')
self.to_out = NormLinear(dim_inner, dim, norm_dim_in = False)
def forward(
self,
x
):
q, k, v = self.to_q(x), self.to_k(x), self.to_v(x)
q, k, v = map(self.split_heads, (q, k, v))
# query key rmsnorm
q, k = map(l2norm, (q, k))
q = q * self.q_scale
k = k * self.k_scale
# scale is 1., as scaling factor is moved to s_qk (dk ^ 0.25) - eq. 16
out = F.scaled_dot_product_attention(
q, k, v,
dropout_p = self.dropout if self.training else 0.,
scale = 1.
)
out = self.merge_heads(out)
return self.to_out(out)
class FeedForward(Module):
def __init__(
self,
dim,
*,
dim_inner,
dropout = 0.
):
super().__init__()
dim_inner = int(dim_inner * 2 / 3)
self.dim = dim
self.dropout = nn.Dropout(dropout)
self.to_hidden = NormLinear(dim, dim_inner)
self.to_gate = NormLinear(dim, dim_inner)
self.hidden_scale = nn.Parameter(torch.ones(dim_inner))
self.gate_scale = nn.Parameter(torch.ones(dim_inner))
self.to_out = NormLinear(dim_inner, dim, norm_dim_in = False)
def forward(self, x):
hidden, gate = self.to_hidden(x), self.to_gate(x)
hidden = hidden * self.hidden_scale
gate = gate * self.gate_scale * (self.dim ** 0.5)
hidden = F.silu(gate) * hidden
hidden = self.dropout(hidden)
return self.to_out(hidden)
# classes
class nViT(Module):
""" https://arxiv.org/abs/2410.01131 """
def __init__(
self,
*,
image_size,
patch_size,
num_classes,
dim,
depth,
heads,
mlp_dim,
dropout = 0.,
channels = 3,
dim_head = 64,
residual_lerp_scale_init = None
):
super().__init__()
image_height, image_width = pair(image_size)
# calculate patching related stuff
assert divisible_by(image_height, patch_size) and divisible_by(image_width, patch_size), 'Image dimensions must be divisible by the patch size.'
patch_height_dim, patch_width_dim = (image_height // patch_size), (image_width // patch_size)
patch_dim = channels * (patch_size ** 2)
num_patches = patch_height_dim * patch_width_dim
self.channels = channels
self.patch_size = patch_size
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (c p1 p2)', p1 = patch_size, p2 = patch_size),
NormLinear(patch_dim, dim, norm_dim_in = False),
)
self.abs_pos_emb = NormLinear(dim, num_patches)
residual_lerp_scale_init = default(residual_lerp_scale_init, 1. / depth)
# layers
self.dim = dim
self.scale = dim ** 0.5
self.layers = ModuleList([])
self.residual_lerp_scales = nn.ParameterList([])
for _ in range(depth):
self.layers.append(ModuleList([
Attention(dim, dim_head = dim_head, heads = heads, dropout = dropout),
FeedForward(dim, dim_inner = mlp_dim, dropout = dropout),
]))
self.residual_lerp_scales.append(nn.ParameterList([
nn.Parameter(torch.ones(dim) * residual_lerp_scale_init / self.scale),
nn.Parameter(torch.ones(dim) * residual_lerp_scale_init / self.scale),
]))
self.logit_scale = nn.Parameter(torch.ones(num_classes))
self.to_pred = NormLinear(dim, num_classes)
@torch.no_grad()
def norm_weights_(self):
for module in self.modules():
if not isinstance(module, NormLinear):
continue
normed = module.weight
original = module.linear.parametrizations.weight.original
original.copy_(normed)
def forward(self, images):
device = images.device
tokens = self.to_patch_embedding(images)
seq_len = tokens.shape[-2]
pos_emb = self.abs_pos_emb.weight[torch.arange(seq_len, device = device)]
tokens = l2norm(tokens + pos_emb)
for (attn, ff), (attn_alpha, ff_alpha) in zip(self.layers, self.residual_lerp_scales):
attn_out = l2norm(attn(tokens))
tokens = l2norm(tokens.lerp(attn_out, attn_alpha * self.scale))
ff_out = l2norm(ff(tokens))
tokens = l2norm(tokens.lerp(ff_out, ff_alpha * self.scale))
pooled = reduce(tokens, 'b n d -> b d', 'mean')
logits = self.to_pred(pooled)
logits = logits * self.logit_scale * self.scale
return logits
# quick test
if __name__ == '__main__':
v = nViT(
image_size = 256,
patch_size = 16,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 8,
mlp_dim = 2048,
)
img = torch.randn(4, 3, 256, 256)
logits = v(img) # (4, 1000)
assert logits.shape == (4, 1000)