-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSKI.hs
237 lines (182 loc) · 6.01 KB
/
SKI.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
{-|
Module : SKI
Description : Deep-embedding of the SKI combinator calculus in Haskell.
Copyright : (c) Luke Geeson, 2018
License : GPL-3
Maintainer : [email protected]
Stability : stable
Portability : POSIX
The "SKI" module denotes the abstract syntax and evaluation of the SKI combinator calculus. This language is implemented as a deep embedding into Haskell, with all the canonical helper functions it needs.
-}
module SKI where
-- Tool Imports
import qualified Data.Set as S
-- | SKI combinator calculus
-- the pure calculus is symbols S,K,I and application. Variables are added to simplify use
data SKTerm
= Var String
| S
| K
| I
| App SKTerm SKTerm
deriving (Eq,Ord)
-- | Type Synonym for variable names in a term.
type VarName = String
{-
-- alpha equivalence of lambda SKTerms as Eq instance for Lambda SKTerms
instance Eq SKTerm where
a == b = SKTermEquality (a, b) (M.empty, M.empty) 0
-- checks for equality of SKTerms, has a map (SKTerm, id) for each variable
-- each abstraction adds to the map and increments the id
-- variable occurrence checks for ocurrences in t1 and t2 using the logic:
-- if both bound, check that s is same in both maps
-- if neither is bound, check literal equality
-- if bound t1 XOR bound t2 == true then False
-- application recursively checks both the LHS and RHS
SKTermEquality :: (SKTerm, SKTerm) -> (Map Int Int, Map Int Int) -> Int -> Bool
SKTermEquality (Var x, Var y) (m1, m2) s = case M.lookup x m1 of
Just a -> case M.lookup y m2 of
Just b -> a == b
_ -> False
_ -> x == y
SKTermEquality (Abs x t1, Abs y t2) (m1, m2) s =
SKTermEquality (t1, t2) (m1', m2') (s+1)
where
m1' = M.insert x s m1
m2' = M.insert y s m2
SKTermEquality (App a1 b1, App a2 b2) c s =
SKTermEquality (a1, a2) c s && SKTermEquality (b1, b2) c s
SKTermEquality _ _ _ = False
-}
-- | Show instance for SKI terms
instance Show SKTerm where
show (Var x)
= x
show (App t1 t2)
= show t1 ++ " " ++ paren (isApp t2) (show t2)
show S
= "S"
show K
= "K"
show I
= "I"
-- | Helper function encloses the input string in (parens) if the
-- first parameter is true.
paren :: Bool -> String -> String
paren True x = "(" ++ x ++ ")"
paren False x = x
-- | Helper function returns true if the term is an application.
isApp :: SKTerm -> Bool
isApp (App _ _) = True
isApp _ = False
-- | Function returns a set of bound variables of a term.
bound :: SKTerm -> S.Set VarName
bound (Var _) = S.empty
bound S = S.empty
bound K = S.empty
bound I = S.empty
bound (App t1 t2) = S.union (bound t1) (bound t2)
-- | Function returns a set of free variables of a term.
free :: SKTerm -> S.Set VarName
free (Var n) = S.singleton n
free S = S.empty
free K = S.empty
free I = S.empty
free (App t1 t2) = S.union (free t1) (free t2)
-- | Function tests to see if a term is closed (has no free vars).
closed :: SKTerm -> Bool
closed = S.null . free
-- | Function returns the set of subterms of a term.
sub :: SKTerm -> S.Set SKTerm
sub t@(Var _) = S.singleton t
sub S = S.singleton S
sub K = S.singleton K
sub I = S.singleton I
sub t@(App t1 t2) = S.insert t $ S.union (sub t1) (sub t2)
-- | Function determines if a variable is bound in a term.
notfree :: String -> SKTerm -> Bool
notfree x = not . S.member x . free
-- | Function returns the set of variables in a term.
vars :: SKTerm -> S.Set VarName
vars (Var x) = S.singleton x
vars (App t1 t2) = S.union (vars t1) (vars t2)
vars S = S.empty
vars K = S.empty
vars I = S.empty
-- | Function generates a fresh variable name for a term.
newlabel :: SKTerm -> String
newlabel x = head . dropWhile (`elem` vars x)
$ iterate genVar $ S.foldr biggest "" $ vars x
-- | Function generates fresh variable names from a given variable.
genVar :: String -> String
genVar [] = "a"
genVar ('z':xs) = 'a':genVar xs
genVar ( x :xs) = succ x:xs
-- | Function is the length-observing maximum function
-- that falls back on lexicographic ordering
biggest :: String -> String -> String
biggest xs ys = if length xs > length ys
then xs
else max xs ys
-- | Function substitutes one term for another in a term
-- does capture avoiding substitution (Berendregt)
substitute :: SKTerm -> (SKTerm, SKTerm) -> SKTerm
substitute t1@(Var c1) (Var c2, t2)
= if c1 == c2
then t2
else t1
substitute (App t1 t2) c
= App (substitute t1 c) (substitute t2 c)
substitute t1 _ = t1
-- | One-step reduction relation on terms.
reduce1 :: SKTerm -> Maybe SKTerm
reduce1 (Var _)
= Nothing
reduce1 (App I x)
= Just x --K x ~> x
reduce1 (App (App K x) _)
= Just x --K x ~> x
reduce1 (App K x)
= case reduce1 x of
Just x' -> Just $ App K x'
_ -> Nothing
reduce1 (App (App (App S x) y) z)
= --S x y z ~> x z (y z)
Just $ App (App x z) (App y z)
reduce1 (App S x)
= case reduce1 x of
Just x' -> Just $ App S x'
_ -> Nothing
reduce1 (App t1 t2)
= case reduce1 t1 of
Just t' -> Just $ App t' t2
_ -> case reduce1 t2 of
Just t' -> Just $ App t1 t'
_ -> Nothing
reduce1 _ = Nothing
-- | Multi-step reduction relation that accumulates all reduction steps.
-- useful for logging how a term reduces.
reduce :: SKTerm -> SKTerm
reduce t = maybe t reduce (reduce1 t)
-- | Multi-step reduction relation that accumulates all reduction steps.
-- useful for logging how a term reduces.
reductions :: SKTerm -> [SKTerm]
reductions t = case reduce1 t of
Just t' -> t' : reductions t'
_ -> []
-- | Identity Combinator
i = App (App (App S K) K)
-- | B combinator
b = App (App S $ App K S) K
-- | C Combinator
c = App (App S (App (App S $ App K b) S)) (App K K)
-- | s4 Combinator
s4 = App (App (App S S) S) S
-- | Sii Combinator
sii = App (App (App S I) I)
-- | true
t = App K
-- | false
f = App (App S K)
-- | ci Combinator
ci x = App (App (App c I) x)