-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
71 lines (53 loc) · 2.45 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from torch.utils.data import Dataset
import numpy as np
import cv2
def _read_image(image_path):
# Read image (mmg : 16 bit image, dbt : 8 bit image)
image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE | cv2.IMREAD_ANYDEPTH)
image = image.astype(np.float32) / np.iinfo(image.dtype).max
return image
def _read_mask(image_size, lesions):
mask = np.zeros(image_size, np.uint8)
for lesion in lesions:
if lesion['label'] != 2:
continue
contour = np.asarray(lesion['contour'])
mask = cv2.drawContours(mask, [contour], 0, color=255, thickness=-1)
mask = mask > 0
return mask
def _input_normalization(image, stats):
# Normalization
image -= stats['mean']
image /= stats['std']
return image
class ImageDataset(Dataset):
def __init__(self, data, args, use_compressed=False):
self._data = data
self._image_size = tuple(args.image_size)
self._map_size = args.map_size
self._use_compressed = use_compressed
self.stats = {'mean': 0., 'std': 1.}
assert len(self._data) > 0, "Data read from pickle failed or too few data"
assert (not self._use_compressed) or 'compressed_image_path' in self._data[0].keys(), \
"Dataset requires compressed images, but pickle doesn't have them."
assert (self._use_compressed) or 'uncompressed_image_path' in self._data[0].keys(), \
"Dataset requires uncompressed images, but pickle doesn't have them."
def __len__(self):
return len(self._data)
def __getitem__(self, index):
image = _read_image(
self._data[index]['compressed_image_path'] if self._use_compressed
else self._data[index]['uncompressed_image_path']
)
image = _input_normalization(image, self.stats)
mask_cancer = _read_mask(self._data[index]['image_size'], self._data[index]['lesions'])
image = cv2.resize(image, self._image_size)
mask_cancer = mask_cancer.astype(np.uint8)
mask_cancer = cv2.resize(mask_cancer, self._map_size, interpolation=cv2.INTER_NEAREST)
mask_cancer = mask_cancer.astype(np.float32)
image = np.expand_dims(image, 0)
return image, mask_cancer
class EvalImageDataset(ImageDataset):
def __getitem__(self, index):
image, mask_cancer = super(EvalImageDataset, self).__getitem__(index)
return image, mask_cancer, self._data[index]['case_id'], self._data[index]['case_label']