-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
72 lines (62 loc) · 1.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import torch
import numpy as np
class AverageCounter(object):
def __init__(self):
self._sum = None
self._count = None
self.reset()
def reset(self):
self._sum = 0.
self._count = 0
def __call__(self, value):
if isinstance(value, torch.Tensor):
sum_ = torch.sum(value).item()
count = np.prod(value.size())
elif isinstance(value, np.ndarray):
sum_ = np.sum(value).item()
count = np.prod(value.shape)
elif isinstance(value, (int, float)):
sum_ = value
count = 1
else:
raise KeyError('Meter supports only numeric value')
self._sum += sum_
self._count += count
@property
def value(self):
return self._sum / self._count if self._count > 0 else 0.
class StdevCounter(object):
def __init__(self):
self._sum = None
self._square_sum = None
self._count = None
self.reset()
def reset(self):
self._sum = 0.
self._square_sum = 0.
self._count = 0
def __call__(self, value):
if isinstance(value, torch.Tensor):
sum_ = torch.sum(value).item()
square_sum = torch.sum(value ** 2).item()
count = np.prod(value.size())
elif isinstance(value, np.ndarray):
sum_ = np.sum(value).item()
square_sum = np.sum(value ** 2).item()
count = np.prod(value.shape)
elif isinstance(value, (int, float)):
sum_ = value
square_sum = value ** 2
count = 1
else:
raise KeyError('Meter supports only numeric value')
self._sum += sum_
self._square_sum += square_sum
self._count += count
@property
def value(self):
if self._count == 0:
return 1.
square_mean = self._square_sum / self._count
mean_square = (self._sum / self._count) ** 2
return np.sqrt(square_mean - mean_square)