-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathimage_object_detection.py
87 lines (66 loc) · 2.95 KB
/
image_object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# -*- coding: utf-8 -*-
import numpy as np
import os
import tensorflow as tf
import time
import cv2
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
if tf.__version__ < '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
#添加python环境变量
CWD_PATH = os.getcwd()
sys.path.append(CWD_PATH)
SLIM_PATH = os.path.join(CWD_PATH,'slim')
sys.path.append(SLIM_PATH)
#已经训练好的模型路径
MODEL_NAME = 'pedestrian_detection'
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join(CWD_PATH,'annotations\label_map.pbtxt')
NUM_CLASSES = 1
#将模型载入内存
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
#载入label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
#测试图片路径
image_path = 'test_image.jpg'
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
image_np = cv2.imread(image_path)
start = time.clock()
image_np_expanded = np.expand_dims(image_np, axis=0)
# 开始检测
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
end = time.clock()
# 可视化检测结果
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
print('test time: ','\n', str(end - start), 's')
cv2.imshow('测试结果',image_np)
k = cv2.waitKey(0) & 0xFF
if k == 27: # 按下esc时,退出
cv2.destroyAllWindows()
elif k == ord('s'): # 按下s键时保存并退出
cv2.imwrite('tet_output.jpg', image_np)
cv2.destroyAllWindows()