Skip to content

Latest commit

 

History

History

10

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Given an input string (s) and a pattern (p), implement regular expression matching with support for '.' and '*'.

'.' Matches any single character.
'*' Matches zero or more of the preceding element.

The matching should cover the entire input string (not partial).

Note:

  • s could be empty and contains only lowercase letters a-z.
  • p could be empty and contains only lowercase letters a-z, and characters like . or *.

Example 1:

Input:
s = "aa"
p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Example 2:

Input:
s = "aa"
p = "a*"
Output: true
Explanation: '*' means zero or more of the preceding element, 'a'. Therefore, by repeating 'a' once, it becomes "aa".

Example 3:

Input:
s = "ab"
p = ".*"
Output: true
Explanation: ".*" means "zero or more (*) of any character (.)".

Example 4:

Input:
s = "aab"
p = "c*a*b"
Output: true
Explanation: c can be repeated 0 times, a can be repeated 1 time. Therefore, it matches "aab".

Example 5:

Input:
s = "mississippi"
p = "mis*is*p*."
Output: false

Related Topics:
String, Dynamic Programming, Backtracking

Similar Questions:

Solution 1. DFS

// OJ: https://leetcode.com/problems/regular-expression-matching/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(M)
class Solution {
private:
    inline bool matchChar(string &s, int i, string &p, int j) {
        return p[j] == '.' ? i < s.size() : s[i] == p[j];
    }
    bool isMatch(string s, int i, string p, int j) {
        if (j == p.size()) return i == s.size();
        if (j + 1 < p.size() && p[j + 1] == '*') {
            bool ans = false;
            while (!(ans = isMatch(s, i, p, j + 2))
            && matchChar(s, i, p, j)) ++i;
            return ans;
        } else {
            return matchChar(s, i, p, j) && isMatch(s, i + 1, p, j + 1);
        }
    }
public:
    bool isMatch(string s, string p) {
        return isMatch(s, 0, p, 0);
    }
};

Solution 2. DFS

// OJ: https://leetcode.com/problems/regular-expression-matching/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
    int M, N;
    bool dfs(string &s, string &p, int i, int j) {
        while (i < M && j < N) {
            if (j + 1 < N && p[j + 1] == '*') {
                if (dfs(s, p, i, j + 2)) return true;
                while (i < M && (p[j] == '.' || s[i] == p[j])) {
                    if (dfs(s, p, ++i, j + 2)) return true;
                }
                return false;
            } else {
                if (p[j] != '.' && s[i] != p[j]) return false;
                ++i, ++j;
            }
        }
        if (i == M) {
            while (j + 1 < N && p[j + 1] == '*') j += 2;
        }
        return i == M && j == N;
    }
public:
    bool isMatch(string s, string p) {
        M = s.size(), N = p.size();
        return dfs(s, p, 0, 0);
    }
};

Solution 3. DP (DFS + Memo)

// OJ: https://leetcode.com/problems/regular-expression-matching/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
    int M, N;
    vector<vector<int>> m;
    int dfs(string &s, string &p, int i, int j) {
        if (m[i][j] != 0) return m[i][j];
        while (i < M && j < N) {
            if (j + 1 < N && p[j + 1] == '*') {
                do {
                    m[i][j] = dfs(s, p, i, j + 2);
                    if (m[i][j] == 1) return 1;
                    if (p[j] == '.' || s[i] == p[j]) ++i;
                    else return m[i][j] = -1;
                } while (i < M);
            } else {
                if (p[j] != '.' && s[i] != p[j]) return m[i][j] = -1;
                ++i, ++j;
            }
        }
        if (i == M) {
            while (j + 1 < N && p[j + 1] == '*') j += 2;
        }
        return i == M && j == N ? 1 : -1;
    }
public:
    bool isMatch(string s, string p) {
        M = s.size(), N = p.size();
        m.assign(M + 1, vector<int>(N + 1));
        return dfs(s, p, 0, 0) == 1;
    }
};

Solution 4. DP Bottom-up

When I was looking at the DP solution provided by LeetCode, I thought why not iterating from the beginning?

Let dp[i][j] be whether s[0..(i-1)] and p[0..(j-1)] matches, where i is in [0, M], j is in [0, N], and M and N are the lengths of s and p respectively.

The result would be dp[M][N].

Trivial case dp[0][0] = true.

We handle the * pattern when visiting *, so we skip p[j-1] if p[j] == '*'.

  • If p[j-1] == '*', we can try using this * pattern to:
    1. match 0 element, so dp[i][j] = dp[i][j - 2].
    2. match 1 element if p[j-2] and s[i-1] matches, so dp[i][j] = dp[i-1][j-2]
    3. if the above case is true and p[j-2] and s[i-2] matches, match 2 elements, so dp[i][j] = dp[i-2][j-2].
    4. ...
    5. keep trying until we are unable to match.
  • Otherwise, if p[j-1] and s[i-1] matches, dp[i][j] = dp[i-1][j-1].
// OJ: https://leetcode.com/problems/regular-expression-matching/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
    bool isMatch(string s, string p) {
        int M = s.size(), N = p.size();
        vector<vector<bool>> dp(M + 1, vector<bool>(N + 1));
        dp[0][0] = true;
        for (int i = 0; i <= M; ++i) {
            for (int j = 1; j <= N; ++j) {
                if (j < N && p[j] == '*') continue; // the next element is '*', skip the current one
                if (p[j - 1] == '*') {
                    int k = i;
                    do {
                        if (dp[i][j] = dp[k][j - 2]) break;
                        if (k > 0 && (p[j - 2] == '.' || s[k - 1] == p[j - 2])) --k;
                        else break;
                    } while (k >= 0);
                } else if (i - 1 >= 0 && (p[j - 1] == '.' || s[i - 1] == p[j - 1])) dp[i][j] = dp[i - 1][j - 1];
            }
        }
        return dp[M][N];
    }
};

Solution 5. DP Bottom-up

Let dp[i][j] be whether s[i..(M-1)] and p[j..(N-1)] matches, where M and N are the lengths of s and p respectively, and i is in [0,M] and j is in [0,N].

The result would be dp[0][0].

Trivial case dp[M][N] = true.

  • If p[j + 1] == '*', then we have two options:
    1. ignore this p[j]* pattern, so dp[i][j] = dp[i][j + 2].
    2. If s[i] matches p[j], we can use dp[j]* to cover s[i], so dp[i][j] = dp[i + 1][j].
  • Otherwise, if s[i] matches p[j], dp[i][j] = dp[i + 1][j + 1]
  • Otherwise, dp[i][j] = false.
// OJ: https://leetcode.com/problems/regular-expression-matching/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
// Ref: https://leetcode.com/problems/regular-expression-matching/solution/
class Solution {
public:
    bool isMatch(string s, string p) {
        int M = s.size(), N = p.size();
        vector<vector<bool>> dp(M + 1, vector<bool>(N + 1));
        dp[M][N] = true;
        for (int i = M; i >= 0; --i) {
            for (int j = N - 1; j >= 0; --j) {
                bool match = i < M && (p[j] == '.' || p[j] == s[i]);
                if (j + 1 < N && p[j + 1] == '*') dp[i][j] = dp[i][j + 2] || (match && dp[i + 1][j]);
                else dp[i][j] = match && dp[i + 1][j + 1];
            }
        }
        return dp[0][0];
    }
};