Skip to content

Latest commit

 

History

History

115

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Given two strings s and t, return the number of distinct subsequences of s which equals t.

A string's subsequence is a new string formed from the original string by deleting some (can be none) of the characters without disturbing the remaining characters' relative positions. (i.e., "ACE" is a subsequence of "ABCDE" while "AEC" is not).

It is guaranteed the answer fits on a 32-bit signed integer.

 

Example 1:

Input: s = "rabbbit", t = "rabbit"
Output: 3
Explanation:
As shown below, there are 3 ways you can generate "rabbit" from S.
rabbbit
rabbbit
rabbbit

Example 2:

Input: s = "babgbag", t = "bag"
Output: 5
Explanation:
As shown below, there are 5 ways you can generate "bag" from S.
babgbag
babgbag
babgbag
babgbag
babgbag

 

Constraints:

  • 1 <= s.length, t.length <= 1000
  • s and t consist of English letters.

Companies:
Amazon, Mathworks, Google

Related Topics:
String, Dynamic Programming

Similar Questions:

Solution 1. Bottom-up DP

Can use DP for this problem? Yes, because there are lots of duplicate sub-problems.

For example, if s = ddoooo and t = do, assume we solved the sub-problem s' = dd and t' = d whose result is 2. Now I have four o in s to match the o in t. So the result of sub-problem can be used four times.

Let dp[i+1][j+1] the be distinct subsequence of s[0..i] and t[0..j]. The answer is dp[M][N].

For dp[i+1][j+1], we can:

  • add dp[i][j+1] to it, which means we simply don't use s[i] at all.
  • If s[i] == t[j], we can add dp[i][j] to it.

So we have:

dp[i+1][j+1] = dp[i][j+1]
                + (s[i] == t[j] ? dp[i][j] : 0) 

dp[0][j] = 0 
dp[i][0] = 1
// OJ: https://leetcode.com/problems/distinct-subsequences
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
    int numDistinct(string s, string t) {
        int M = s.size(), N = t.size();
        vector<vector<long>> dp(M + 1, vector<long>(N + 1));
        for (int i = 0; i <= M; ++i) dp[i][0] = 1;
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) {
                dp[i + 1][j + 1] = dp[i][j + 1];
                if (s[i] == t[j]) dp[i + 1][j + 1] += dp[i][j];
                if (dp[i + 1][j + 1] > INT_MAX) dp[i + 1][j + 1] = 0; // Since the answer is guaranteed to fit on a 32-bit signed integer, once the intermediate value exceeds `INT_MAX`, we can reset it to `0` since it won't be used in the answer.
            }
        }
        return dp[M][N];
    }
};

Solution 2. Space-optimized Bottom-up DP

Since dp[i+1][j+1] only depends on dp[i][j] and dp[i][j+1], we can reduce the dp array from M * N to 1 * N.

// OJ: https://leetcode.com/problems/distinct-subsequences
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(N)
class Solution {
public:
    int numDistinct(string s, string t) {
        int M = s.size(), N = t.size();
        vector<long> dp(N + 1);
        dp[0] = 1;
        for (int i = 0; i < M; ++i) {
            for (int j = N - 1; j >= 0; --j) {
                if (s[i] == t[j]) dp[j + 1] += dp[j];
                if (dp[j + 1] > INT_MAX) dp[j + 1] = 0;
            }
        }
        return dp[N];
    }
};

Solution 3. Top-down DP (DFS + memo)

Using the same DP formula, we can do a top-down DP as well.

// OJ: https://leetcode.com/problems/distinct-subsequences
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
    int numDistinct(string s, string t) {
        int M = s.size(), N = t.size();
        vector<vector<int>> m(M, vector<int>(N, -1));
        function<int(int, int)> dp = [&](int i, int j) {
            if (i == M || j == N) return int(j == N);
            if (m[i][j] != -1) return m[i][j];
            long ans = dp(i + 1, j);
            if (s[i] == t[j]) ans += dp(i + 1, j + 1);
            if (ans > INT_MAX) ans = 0;
            return m[i][j] = ans;
        };
        return dp(0, 0);
    }
};