Given a set of distinct positive integers nums
, return the largest subset answer
such that every pair (answer[i], answer[j])
of elements in this subset satisfies:
answer[i] % answer[j] == 0
, oranswer[j] % answer[i] == 0
If there are multiple solutions, return any of them.
Example 1:
Input: nums = [1,2,3] Output: [1,2] Explanation: [1,3] is also accepted.
Example 2:
Input: nums = [1,2,4,8] Output: [1,2,4,8]
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 2 * 109
- All the integers in
nums
are unique.
Companies:
Codenation, Google, Microsoft, Apple
Related Topics:
Array, Math, Dynamic Programming, Sorting
Sort the array in ascending order.
Let dp[i]
be the size of the largest divisible subset that is within A[0..i]
and contain A[i]
.
dp[i] = max(dp[j] + 1 | 0 <= j < i && A[i] % A[j] == 0)
dp[0] = 1
In order to recover the subset, we also use a prev
array where prev[i]
is the choice of previous index corresponding to dp[i]
.
// OJ: https://leetcode.com/problems/largest-divisible-subset/
// Author: github.com/lzl124631x
// Time: O(N^2)
// Space: O(N)
class Solution {
public:
vector<int> largestDivisibleSubset(vector<int>& A) {
sort(begin(A), end(A));
int N = A.size(), last = 0;
vector<int> dp(N, 1), prev(N, -1), ans;
for (int i = 1; i < N; ++i) {
for (int j = 0; j < i; ++j) {
if (A[i] % A[j] == 0 && dp[j] + 1 > dp[i]) {
dp[i] = dp[j] + 1;
prev[i] = j;
}
}
if (dp[i] > dp[last]) last = i;
}
for (int i = last; i != -1; i = prev[i]) ans.push_back(A[i]);
return ans;
}
};