You have n
coins and you want to build a staircase with these coins. The staircase consists of k
rows where the ith
row has exactly i
coins. The last row of the staircase may be incomplete.
Given the integer n
, return the number of complete rows of the staircase you will build.
Example 1:
Input: n = 5 Output: 2 Explanation: Because the 3rd row is incomplete, we return 2.
Example 2:
Input: n = 8 Output: 3 Explanation: Because the 4th row is incomplete, we return 3.
Constraints:
1 <= n <= 231 - 1
Companies:
Salesforce
Related Topics:
Math, Binary Search
// OJ: https://leetcode.com/problems/arranging-coins/
// Author: github.com/lzl124631x
// Time: O(sqrt(N))
// Space: O(1)
class Solution {
public:
int arrangeCoins(int n) {
long i = 1, sum = 0;
while (sum + i <= n) sum += i++;
return i - 1;
}
};
// OJ: https://leetcode.com/problems/arranging-coins/
// Author: github.com/lzl124631x
// Time: O(logN)
// Space: O(1)
class Solution {
public:
int arrangeCoins(int n) {
int L = 1, R = n;
while (L <= R) {
long M = L + (R - L) / 2, sum = M * (1 + M) / 2;
if (sum == n) return M;
if (sum < n) L = M + 1;
else R = M - 1;
}
return R;
}
};
Or use L < R
// OJ: https://leetcode.com/problems/arranging-coins/
// Author: github.com/lzl124631x
// Time: O(logN)
// Space: O(1)
class Solution {
public:
int arrangeCoins(int n) {
int L = 1, R = n;
while (L < R) {
long M = R - (R - L) / 2, sum = M * (1 + M) / 2;
if (sum <= n) L = M;
else R = M - 1;
}
return L;
}
};
x * (x + 1) / 2 <= n
x^2 + x - 2n <= 0
x <= (sqrt(8n + 1) - 1) / 2
// OJ: https://leetcode.com/problems/arranging-coins/
// Author: github.com/lzl124631x
// Time: O(1)
// Space: O(1)
class Solution {
public:
int arrangeCoins(int n) {
return (sqrt((long)8 * n + 1) - 1) / 2;
}
};