Design and implement a data structure for a Least Frequently Used (LFU) cache.
Implement the LFUCache
class:
LFUCache(int capacity)
Initializes the object with thecapacity
of the data structure.int get(int key)
Gets the value of thekey
if thekey
exists in the cache. Otherwise, returns-1
.void put(int key, int value)
Update the value of thekey
if present, or inserts thekey
if not already present. When the cache reaches itscapacity
, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently usedkey
would be invalidated.
To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.
When a key is first inserted into the cache, its use counter is set to 1
(due to the put
operation). The use counter for a key in the cache is incremented either a get
or put
operation is called on it.
The functions get
and put
must each run in O(1)
average time complexity.
Example 1:
Input ["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"] [[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]] Output [null, null, null, 1, null, -1, 3, null, -1, 3, 4]Explanation // cnt(x) = the use counter for key x // cache=[] will show the last used order for tiebreakers (leftmost element is most recent) LFUCache lfu = new LFUCache(2); lfu.put(1, 1); // cache=[1,_], cnt(1)=1 lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1 lfu.get(1); // return 1 // cache=[1,2], cnt(2)=1, cnt(1)=2 lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2. // cache=[3,1], cnt(3)=1, cnt(1)=2 lfu.get(2); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,1], cnt(3)=2, cnt(1)=2 lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1. // cache=[4,3], cnt(4)=1, cnt(3)=2 lfu.get(1); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,4], cnt(4)=1, cnt(3)=3 lfu.get(4); // return 4 // cache=[4,3], cnt(4)=2, cnt(3)=3
Constraints:
1 <= capacity <= 104
0 <= key <= 105
0 <= value <= 109
- At most
2 * 105
calls will be made toget
andput
.
Companies: Amazon, Apple, Google
Related Topics:
Hash Table, Linked List, Design, Doubly-Linked List
Similar Questions:
// OJ: https://leetcode.com/problems/lfu-cache
// Author: github.com/lzl124631x
// Time:
// LFUCache: O(1)
// get: O(logF) where F is the maximum of unique frequencies
// put: O(logF)
// Space: O(N)
class LFUCache {
int capacity, cnt = 0;
map<int, list<int>> data; // freq -> entries. The least recently used is at the front
unordered_map<int, list<int>::iterator> m;
unordered_map<int, int> vals, freq;
public:
LFUCache(int capacity) : capacity(capacity) {}
int get(int key) {
if (!m.count(key)) return -1;
int f = freq[key];
data[f].erase(m[key]);
if (data[f].empty()) data.erase(f);
data[f + 1].push_front(key);
m[key] = data[f + 1].begin();
freq[key]++;
return vals[key];
}
void put(int key, int value) {
if (get(key) == -1) {
++cnt;
if (cnt > capacity) {
int f = data.begin()->first;
int rm = data[f].back();
data[f].pop_back();
m.erase(rm);
freq.erase(rm);
vals.erase(rm);
--cnt;
}
freq[key] = 1;
data[1].push_front(key);
m[key] = data[1].begin();
vals[key] = value;
} else vals[key] = value;
}
};