Skip to content

Latest commit

 

History

History

460

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Design and implement a data structure for a Least Frequently Used (LFU) cache.

Implement the LFUCache class:

  • LFUCache(int capacity) Initializes the object with the capacity of the data structure.
  • int get(int key) Gets the value of the key if the key exists in the cache. Otherwise, returns -1.
  • void put(int key, int value) Update the value of the key if present, or inserts the key if not already present. When the cache reaches its capacity, it should invalidate and remove the least frequently used key before inserting a new item. For this problem, when there is a tie (i.e., two or more keys with the same frequency), the least recently used key would be invalidated.

To determine the least frequently used key, a use counter is maintained for each key in the cache. The key with the smallest use counter is the least frequently used key.

When a key is first inserted into the cache, its use counter is set to 1 (due to the put operation). The use counter for a key in the cache is incremented either a get or put operation is called on it.

The functions get and put must each run in O(1) average time complexity.

 

Example 1:

Input
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]

Explanation // cnt(x) = the use counter for key x // cache=[] will show the last used order for tiebreakers (leftmost element is most recent) LFUCache lfu = new LFUCache(2); lfu.put(1, 1); // cache=[1,_], cnt(1)=1 lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1 lfu.get(1); // return 1 // cache=[1,2], cnt(2)=1, cnt(1)=2 lfu.put(3, 3); // 2 is the LFU key because cnt(2)=1 is the smallest, invalidate 2.   // cache=[3,1], cnt(3)=1, cnt(1)=2 lfu.get(2); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,1], cnt(3)=2, cnt(1)=2 lfu.put(4, 4); // Both 1 and 3 have the same cnt, but 1 is LRU, invalidate 1. // cache=[4,3], cnt(4)=1, cnt(3)=2 lfu.get(1); // return -1 (not found) lfu.get(3); // return 3 // cache=[3,4], cnt(4)=1, cnt(3)=3 lfu.get(4); // return 4 // cache=[4,3], cnt(4)=2, cnt(3)=3

 

Constraints:

  • 1 <= capacity <= 104
  • 0 <= key <= 105
  • 0 <= value <= 109
  • At most 2 * 105 calls will be made to get and put.

 

 

Companies: Amazon, Apple, Google

Related Topics:
Hash Table, Linked List, Design, Doubly-Linked List

Similar Questions:

Solution 1.

// OJ: https://leetcode.com/problems/lfu-cache
// Author: github.com/lzl124631x
// Time:
//      LFUCache: O(1)
//      get: O(logF) where F is the maximum of unique frequencies
//      put: O(logF)
// Space: O(N)
class LFUCache {
    int capacity, cnt = 0;
    map<int, list<int>> data; // freq -> entries. The least recently used is at the front
    unordered_map<int, list<int>::iterator> m;
    unordered_map<int, int> vals, freq;
public:
    LFUCache(int capacity) : capacity(capacity) {}
    
    int get(int key) {
        if (!m.count(key)) return -1;
        int f = freq[key];
        data[f].erase(m[key]);
        if (data[f].empty()) data.erase(f);
        data[f + 1].push_front(key);
        m[key] = data[f + 1].begin();
        freq[key]++;
        return vals[key];
    }
    
    void put(int key, int value) {
        if (get(key) == -1) {
            ++cnt;
            if (cnt > capacity) {
                int f = data.begin()->first;
                int rm = data[f].back();
                data[f].pop_back();
                m.erase(rm);
                freq.erase(rm);
                vals.erase(rm);
                --cnt;
            }
            freq[key] = 1;
            data[1].push_front(key);
            m[key] = data[1].begin();
            vals[key] = value;
        } else vals[key] = value;
    }
};