Skip to content

Latest commit

 

History

History

718

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Given two integer arrays nums1 and nums2, return the maximum length of a subarray that appears in both arrays.

 

Example 1:

Input: nums1 = [1,2,3,2,1], nums2 = [3,2,1,4,7]
Output: 3
Explanation: The repeated subarray with maximum length is [3,2,1].

Example 2:

Input: nums1 = [0,0,0,0,0], nums2 = [0,0,0,0,0]
Output: 5

 

Constraints:

  • 1 <= nums1.length, nums2.length <= 1000
  • 0 <= nums1[i], nums2[i] <= 100

Companies:
Karat, Indeed, Apple, Amazon, Intuit, Wayfair

Related Topics:
Array, Binary Search, Dynamic Programming, Sliding Window, Rolling Hash, Hash Function

Similar Questions:

Solution 1. DP

Let dp[i + 1][j + 1] be the length of the maximum subarray that appears in both the tail of A[0..i] and B[0..j].

dp[i + 1][j + 1] = 1 + dp[i][j]     // A[i] == B[j]
                 = 0                // A[i] != B[j]
// OJ: https://leetcode.com/problems/maximum-length-of-repeated-subarray
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(MN)
class Solution {
public:
    int findLength(vector<int>& A, vector<int>& B) {
        int M = A.size(), N = B.size(), ans = 0;
        vector<vector<int>> dp(M + 1, vector<int>(N + 1));
        for (int i = 0; i < M; ++i) {
            for (int j = 0; j < N; ++j) {
                dp[i + 1][j + 1] = A[i] == B[j] ? (1 + dp[i][j]) : 0;
                ans = max(ans, dp[i + 1][j + 1]);
            }
        }
        return ans;
    }
};

Since dp[i + 1][j + 1] only depends on dp[i][j], we can use 1D array to store the dp array.

// OJ: https://leetcode.com/problems/maximum-length-of-repeated-subarray/
// Author: github.com/lzl124631x
// Time: O(MN)
// Space: O(min(M, N))
class Solution {
public:
    int findLength(vector<int>& A, vector<int>& B) {
        if (A.size() < B.size()) swap(A, B);
        int M = A.size(), N = B.size(), ans = 0;
        vector<int> dp(N + 1, 0);
        for (int i = 0; i < M; ++i) {
            for (int j = N - 1; j >= 0; --j) {
                dp[j + 1] = A[i] == B[j] ? 1 + dp[j] : 0;
                ans = max(ans, dp[j + 1]);
            }
        }
        return ans;
    }
};

Solution 2. Binary Answer + Rolling Hash

Use binary answer to search the maximum length.

For a given length len, generate the rolling hash on A and B and see if there is any hash showing up for both array.

Without hash conflict check (unsafe):

// OJ: https://leetcode.com/problems/maximum-length-of-repeated-subarray/
// Author: github.com/lzl124631x
// Time: O((A + B)log(min(A, B)))
// Space: O(max(A, B))
class Solution {
    bool valid(vector<int> &A, vector<int> &B, int len) {
        unsigned long long d = 16777619, h = 0, p = 1;
        unordered_set<unsigned long long> s;
        for (int i = 0; i < A.size(); ++i) {
            h = h * d + A[i];
            if (i < len) p *= d;
            else h -= A[i - len] * p;
            if (i >= len - 1) s.insert(h);
        }
        h = 0;
        for (int i = 0; i < B.size(); ++i) {
            h = h * d + B[i];
            if (i >= len) h -= B[i - len] * p;
            if (i >= len - 1 && s.count(h)) return true;
        }
        return false;
    }
public:
    int findLength(vector<int>& A, vector<int>& B) {
        int L = 0, R = min(A.size(), B.size());
        while (L < R) {
            int M = (L + R + 1) / 2;
            if (valid(A, B, M)) L = M;
            else R = M - 1;
        }
        return L;
    }
};

With hash conflict check:

// OJ: https://leetcode.com/problems/maximum-length-of-repeated-subarray/
// Author: github.com/lzl124631x
// Time: O((A + B)log(min(A, B)))
// Space: O(A + B)
class Solution {
    typedef unsigned long long ULL;
    vector<ULL> rolling(vector<int> &A, int len) {
        unsigned long long d = 16777619, h = 0, p = 1;
        vector<ULL> ans;
        for (int i = 0; i < A.size(); ++i) {
            h = h * d + A[i];
            if (i < len) p *= d;
            else h -= A[i - len] * p;
            if (i >= len - 1) ans.push_back(h);
        }
        return ans;
    }
    bool valid(vector<int> &A, vector<int> &B, int len) {
        unordered_map<ULL, vector<int>> m;
        auto ra = rolling(A, len), rb = rolling(B, len);
        for (int i = 0; i < ra.size(); ++i) m[ra[i]].push_back(i);
        for (int i = 0; i < rb.size(); ++i) {
            if (m.count(rb[i]) == 0) continue;
            for (int j : m[rb[i]]) {
                if (equal(begin(A) + j, begin(A) + j + len, begin(B) + i)) return true;
            }
        }
        return false;
    }
public:
    int findLength(vector<int>& A, vector<int>& B) {
        int L = 0, R = min(A.size(), B.size());
        while (L < R) {
            int M = (L + R + 1) / 2;
            if (valid(A, B, M)) L = M;
            else R = M - 1;
        }
        return L;
    }
};

Precompute hashes:

// OJ: https://leetcode.com/problems/maximum-length-of-repeated-subarray/
// Author: github.com/lzl124631x
// Time: O((A + B)log(min(A, B)))
// Space: O(A)
const int maxN = 1001;
class Solution {
    typedef unsigned long long ULL;
    ULL ha[maxN], hb[maxN], p[maxN], d = 16777619;
    ULL hash(ULL *h, int begin, int end) {
        return h[end] - h[begin] * p[end - begin];
    }
    bool valid(vector<int> &A, vector<int> &B, int len) {
        unordered_map<ULL, vector<int>> m;
        for (int i = 0; i + len <= A.size(); ++i) m[hash(ha, i, i + len)].push_back(i);
        for (int i = 0; i + len <= B.size(); ++i) {
            ULL h = hash(hb, i, i + len);
            if (m.count(h) == 0) continue;
            for (int j : m[h]) {
                if (equal(begin(A) + j, begin(A) + j + len, begin(B) + i)) return true;
            }
        }
        return false;
    }
public:
    int findLength(vector<int>& A, vector<int>& B) {
        p[0] = 1;
        for (int i = 0; i < A.size() || i < B.size(); ++i) {
            p[i + 1] = p[i] * d;
            if (i < A.size()) ha[i + 1] = ha[i] * d + A[i];
            if (i < B.size()) hb[i + 1] = hb[i] * d + B[i];
        }
        int L = 0, R = min(A.size(), B.size());
        while (L < R) {
            int M = (L + R + 1) / 2;
            if (valid(A, B, M)) L = M;
            else R = M - 1;
        }
        return L;
    }
};