forked from exitudio/BAMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_t2m.py
263 lines (217 loc) · 11 KB
/
gen_t2m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
from os.path import join as pjoin
import torch
import torch.nn.functional as F
from models.mask_transformer.transformer import MaskTransformer, ResidualTransformer
from models.vq.model import RVQVAE, LengthEstimator
from options.eval_option import EvalT2MOptions
from utils.get_opt import get_opt
from utils.fixseed import fixseed
from visualization.joints2bvh import Joint2BVHConvertor
from torch.distributions.categorical import Categorical
from utils.motion_process import recover_from_ric
from utils.plot_script import plot_3d_motion
from utils.paramUtil import t2m_kinematic_chain
import numpy as np
clip_version = 'ViT-B/32'
def load_vq_model(vq_opt):
# opt_path = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.vq_name, 'opt.txt')
vq_model = RVQVAE(vq_opt,
vq_opt.dim_pose,
vq_opt.nb_code,
vq_opt.code_dim,
vq_opt.output_emb_width,
vq_opt.down_t,
vq_opt.stride_t,
vq_opt.width,
vq_opt.depth,
vq_opt.dilation_growth_rate,
vq_opt.vq_act,
vq_opt.vq_norm)
ckpt = torch.load(pjoin(vq_opt.checkpoints_dir, vq_opt.dataset_name, vq_opt.name, 'model', 'net_best_fid.tar'),
map_location='cpu')
model_key = 'vq_model' if 'vq_model' in ckpt else 'net'
vq_model.load_state_dict(ckpt[model_key])
print(f'Loading VQ Model {vq_opt.name} Completed!')
return vq_model, vq_opt
def load_trans_model(model_opt, opt, which_model):
t2m_transformer = MaskTransformer(code_dim=model_opt.code_dim,
cond_mode='text',
latent_dim=model_opt.latent_dim,
ff_size=model_opt.ff_size,
num_layers=model_opt.n_layers,
num_heads=model_opt.n_heads,
dropout=model_opt.dropout,
clip_dim=512,
cond_drop_prob=model_opt.cond_drop_prob,
clip_version=clip_version,
opt=model_opt)
ckpt = torch.load(pjoin(model_opt.checkpoints_dir, model_opt.dataset_name, model_opt.name, 'model', which_model),
map_location='cpu')
model_key = 't2m_transformer' if 't2m_transformer' in ckpt else 'trans'
# print(ckpt.keys())
missing_keys, unexpected_keys = t2m_transformer.load_state_dict(ckpt[model_key], strict=False)
assert len(unexpected_keys) == 0
assert all([k.startswith('clip_model.') for k in missing_keys])
print(f'Loading Transformer {opt.name} from epoch {ckpt["ep"]}!')
return t2m_transformer
def load_res_model(res_opt):
res_opt.num_quantizers = vq_opt.num_quantizers
res_opt.num_tokens = vq_opt.nb_code
res_transformer = ResidualTransformer(code_dim=vq_opt.code_dim,
cond_mode='text',
latent_dim=res_opt.latent_dim,
ff_size=res_opt.ff_size,
num_layers=res_opt.n_layers,
num_heads=res_opt.n_heads,
dropout=res_opt.dropout,
clip_dim=512,
shared_codebook=vq_opt.shared_codebook,
cond_drop_prob=res_opt.cond_drop_prob,
# codebook=vq_model.quantizer.codebooks[0] if opt.fix_token_emb else None,
share_weight=res_opt.share_weight,
clip_version=clip_version,
opt=res_opt)
ckpt = torch.load(pjoin(res_opt.checkpoints_dir, res_opt.dataset_name, res_opt.name, 'model', 'net_best_fid.tar'),
map_location=opt.device)
missing_keys, unexpected_keys = res_transformer.load_state_dict(ckpt['res_transformer'], strict=False)
assert len(unexpected_keys) == 0
assert all([k.startswith('clip_model.') for k in missing_keys])
print(f'Loading Residual Transformer {res_opt.name} from epoch {ckpt["ep"]}!')
return res_transformer
def load_len_estimator(opt):
model = LengthEstimator(512, 50)
ckpt = torch.load(pjoin('checkpoints', opt.dataset_name, 'length_estimator', 'model', 'finest.tar'),
map_location=opt.device)
model.load_state_dict(ckpt['estimator'])
print(f'Loading Length Estimator from epoch {ckpt["epoch"]}!')
return model
if __name__ == '__main__':
parser = EvalT2MOptions()
opt = parser.parse(is_eval=True)
fixseed(opt.seed)
opt.device = torch.device("cpu" if opt.gpu_id == -1 else "cuda:" + str(opt.gpu_id))
torch.autograd.set_detect_anomaly(True)
dim_pose = 251 if opt.dataset_name == 'kit' else 263
# out_dir = pjoin(opt.check)
root_dir = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
model_dir = pjoin(root_dir, 'model')
result_dir = pjoin('./generation', opt.ext)
joints_dir = pjoin(result_dir, 'joints')
animation_dir = pjoin(result_dir, 'animations')
os.makedirs(joints_dir, exist_ok=True)
os.makedirs(animation_dir,exist_ok=True)
model_opt_path = pjoin(root_dir, 'opt.txt')
model_opt = get_opt(model_opt_path, device=opt.device)
#######################
######Loading RVQ######
#######################
vq_opt_path = pjoin('./log/vq', opt.dataset_name, model_opt.vq_name, 'opt.txt')
vq_opt = get_opt(vq_opt_path, device=opt.device)
vq_model, vq_opt = load_vq_model(vq_opt)
model_opt.num_tokens = vq_opt.nb_code
model_opt.num_quantizers = vq_opt.num_quantizers
model_opt.code_dim = vq_opt.code_dim
#################################
######Loading R-Transformer######
#################################
res_opt_path = pjoin('checkpoints', opt.dataset_name, opt.res_name, 'opt.txt')
res_opt = get_opt(res_opt_path, device=opt.device)
res_model = load_res_model(res_opt)
assert res_opt.vq_name == model_opt.vq_name
#################################
######Loading M-Transformer######
#################################
t2m_transformer = load_trans_model(model_opt, opt, 'latest.tar')
##################################
#####Loading Length Predictor#####
##################################
length_estimator = load_len_estimator(model_opt)
t2m_transformer.eval()
vq_model.eval()
res_model.eval()
length_estimator.eval()
res_model.to(opt.device)
t2m_transformer.to(opt.device)
vq_model.to(opt.device)
length_estimator.to(opt.device)
##### ---- Dataloader ---- #####
opt.nb_joints = 21 if opt.dataset_name == 'kit' else 22
mean = np.load(pjoin('checkpoints', opt.dataset_name, model_opt.vq_name, 'meta', 'mean.npy'))
std = np.load(pjoin('checkpoints', opt.dataset_name, model_opt.vq_name, 'meta', 'std.npy'))
def inv_transform(data):
return data * std + mean
prompt_list = []
length_list = []
est_length = False
if opt.text_prompt != "":
prompt_list.append(opt.text_prompt)
if opt.motion_length == 0:
est_length = True
else:
length_list.append(opt.motion_length)
elif opt.text_path != "":
with open(opt.text_path, 'r') as f:
lines = f.readlines()
for line in lines:
infos = line.split('#')
prompt_list.append(infos[0])
if len(infos) == 1 or (not infos[1].isdigit()):
est_length = True
length_list = []
else:
length_list.append(int(infos[-1]))
else:
raise "A text prompt, or a file a text prompts are required!!!"
# print('loading checkpoint {}'.format(file))
if est_length:
print("Since no motion length are specified, we will use estimated motion lengthes!!")
text_embedding = t2m_transformer.encode_text(prompt_list)
pred_dis = length_estimator(text_embedding)
probs = F.softmax(pred_dis, dim=-1) # (b, ntoken)
token_lens = Categorical(probs).sample() # (b, seqlen)
# lengths = torch.multinomial()
else:
token_lens = torch.LongTensor(length_list) // 4
token_lens = token_lens.to(opt.device).long()
m_length = token_lens * 4
captions = prompt_list
sample = 0
kinematic_chain = t2m_kinematic_chain
converter = Joint2BVHConvertor()
for r in range(opt.repeat_times):
print("-->Repeat %d"%r)
with torch.no_grad():
mids, pred_len = t2m_transformer.generate(captions, token_lens,
timesteps=opt.time_steps,
cond_scale=opt.cond_scale,
temperature=opt.temperature,
topk_filter_thres=opt.topkr,
gsample=opt.gumbel_sample,
is_predict_len=opt.motion_length==-1)
token_lens = pred_len
m_length = token_lens*4
# print(mids)
# print(mids.shape)
mids = res_model.generate(mids, captions, token_lens, temperature=1, cond_scale=5)
pred_motions = vq_model.forward_decoder(mids)
pred_motions = pred_motions.detach().cpu().numpy()
data = inv_transform(pred_motions)
for k, (caption, joint_data) in enumerate(zip(captions, data)):
print("---->Sample %d: %s %d"%(k, caption, m_length[k]))
animation_path = pjoin(animation_dir, str(k))
joint_path = pjoin(joints_dir, str(k))
os.makedirs(animation_path, exist_ok=True)
os.makedirs(joint_path, exist_ok=True)
joint_data = joint_data[:m_length[k]]
joint = recover_from_ric(torch.from_numpy(joint_data).float(), 22).numpy()
bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.bvh"%(k, r, m_length[k]))
_, ik_joint = converter.convert(joint, filename=bvh_path, iterations=100)
bvh_path = pjoin(animation_path, "sample%d_repeat%d_len%d.bvh" % (k, r, m_length[k]))
_, joint = converter.convert(joint, filename=bvh_path, iterations=100, foot_ik=False)
save_path = pjoin(animation_path, "sample%d_repeat%d_len%d.mp4"%(k, r, m_length[k]))
ik_save_path = pjoin(animation_path, "sample%d_repeat%d_len%d_ik.mp4"%(k, r, m_length[k]))
plot_3d_motion(ik_save_path, kinematic_chain, ik_joint, title=caption, fps=20)
plot_3d_motion(save_path, kinematic_chain, joint, title=caption, fps=20)
np.save(pjoin(joint_path, "sample%d_repeat%d_len%d.npy"%(k, r, m_length[k])), joint)
np.save(pjoin(joint_path, "sample%d_repeat%d_len%d_ik.npy"%(k, r, m_length[k])), ik_joint)