forked from py4dstem/py4DSTEM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
72 lines (69 loc) · 2.16 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from setuptools import setup, find_packages
from distutils.util import convert_path
with open("README.md", "r") as f:
long_description = f.read()
version_ns = {}
vpath = convert_path("py4DSTEM/version.py")
with open(vpath) as version_file:
exec(version_file.read(), version_ns)
setup(
name="py4DSTEM",
version=version_ns["__version__"],
packages=find_packages(),
description="An open source python package for processing and analysis of 4D STEM data.",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/py4dstem/py4DSTEM/",
author="Benjamin H. Savitzky",
author_email="[email protected]",
license="GNU GPLv3",
keywords="STEM,4DSTEM",
python_requires=">=3.10",
install_requires=[
"numpy >= 1.19, < 2.0",
"scipy >= 1.5.2",
"h5py >= 3.2.0",
"hdf5plugin >= 4.1.3",
"ncempy >= 1.8.1, <= 1.11.2",
"matplotlib >= 3.2.2",
"scikit-image >= 0.17.2",
"scikit-learn >= 0.23.2, < 1.5",
"scikit-optimize >= 0.9.0",
"tqdm >= 4.46.1",
"dill >= 0.3.3",
"gdown >= 5.1.0",
"dask >= 2.3.0",
"distributed >= 2.3.0",
"emdfile >= 0.0.14",
"mpire >= 2.7.1",
"threadpoolctl >= 3.1.0",
"pylops >= 2.1.0",
"colorspacious >= 1.1.2",
],
extras_require={
"ipyparallel": ["ipyparallel >= 6.2.4", "dill >= 0.3.3"],
"cuda": ["cupy >= 10.0.0"],
"acom": ["pymatgen >= 2022, < 2024.8.9", "mp-api == 0.24.1"],
"aiml": [
"tensorflow <= 2.10.0",
"tensorflow-addons <= 0.16.1",
"crystal4D",
"typeguard == 2.7",
],
"aiml-cuda": [
"tensorflow <= 2.10.0",
"tensorflow-addons <= 0.16.1",
"crystal4D",
"cupy >= 10.0.0",
"typeguard == 2.7",
],
"numba": ["numba >= 0.49.1"],
},
package_data={
"py4DSTEM": [
"process/utils/scattering_factors.txt",
"braggvectors/multicorr_row_kernel.cu",
"braggvectors/multicorr_col_kernel.cu",
]
},
)