-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsolver.py
618 lines (480 loc) · 22.7 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
from model import Generator
from model import Discriminator
from torchvision.utils import save_image
import torch
import numpy as np
import os
import time
import datetime
from tqdm import tqdm
import pandas as pd
from sklearn.metrics import roc_curve, auc, classification_report, confusion_matrix
class Solver(object):
"""Solver for training and testing Brainomaly."""
def __init__(self, data_loader, config):
"""Initialize configurations."""
# All config
self.config = config
# Data loader.
self.data_loader = data_loader
# Model configurations.
self.image_size = config.image_size
self.g_conv_dim = config.g_conv_dim
self.d_conv_dim = config.d_conv_dim
self.g_repeat_num = config.g_repeat_num
self.d_repeat_num = config.d_repeat_num
self.lambda_gp = config.lambda_gp
self.lambda_id = config.lambda_id
# Training configurations.
self.dataset = config.dataset
self.batch_size = config.batch_size
self.num_iters = config.num_iters
self.num_iters_decay = config.num_iters_decay
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.n_critic = config.n_critic
self.beta1 = config.beta1
self.beta2 = config.beta2
self.resume_iters = config.resume_iters
# Test configurations.
self.test_iters = config.test_iters
# Miscellaneous.
self.use_tensorboard = config.use_tensorboard
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Directories.
self.log_dir = config.log_dir
self.sample_dir = config.sample_dir
self.model_save_dir = config.model_save_dir
self.result_dir = config.result_dir
# Step size.
self.log_step = config.log_step
self.sample_step = config.sample_step
self.model_save_step = config.model_save_step
self.lr_update_step = config.lr_update_step
# Neptune parameters
self.neptune_id = config.neptune_id
self.neptune_key = config.neptune_key
# Build the model and tensorboard.
self.build_model()
if self.use_tensorboard:
self.build_tensorboard()
# log parameters to neptune
if config.mode == 'train':
params = {}
for k, v in vars(config).items():
params[f"Param/{k}"] = v
self.logger.log(params)
else:
assert self.neptune_id is not None, "neptune_id is not defined"
assert self.neptune_key is not None, "neptune_key is not defined"
def build_model(self):
"""Create a generator and a discriminator."""
if self.dataset in ['MedicalData']:
self.G = Generator(self.g_conv_dim, 0, self.g_repeat_num)
self.D = Discriminator(self.image_size, self.d_conv_dim, 0, self.d_repeat_num)
self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(self.D.parameters(), self.d_lr, [self.beta1, self.beta2])
self.print_network(self.G, 'G')
self.print_network(self.D, 'D')
self.G.to(self.device)
self.D.to(self.device)
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def restore_model(self, resume_iters):
"""Restore the trained generator and discriminator."""
print('Loading the trained models from step {}...'.format(resume_iters))
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(resume_iters))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(resume_iters))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
# if D_path exists, load it
if os.path.exists(D_path):
self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage))
def build_tensorboard(self):
"""Build a tensorboard logger."""
from logger import Logger
if self.neptune_id is not None:
self.logger = Logger(self.neptune_id)
else:
self.logger = Logger()
self.neptune_id = self.logger.get_id()
def update_lr(self, g_lr, d_lr):
"""Decay learning rates of the generator and discriminator."""
for param_group in self.g_optimizer.param_groups:
param_group['lr'] = g_lr
for param_group in self.d_optimizer.param_groups:
param_group['lr'] = d_lr
def reset_grad(self):
"""Reset the gradient buffers."""
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
def denorm(self, x):
"""Convert the range from [-1, 1] to [0, 1]."""
out = (x + 1) / 2
return out.clamp_(0, 1)
def gradient_penalty(self, y, x):
"""Compute gradient penalty: (L2_norm(dy/dx) - 1)**2."""
weight = torch.ones(y.size()).to(self.device)
dydx = torch.autograd.grad(outputs=y,
inputs=x,
grad_outputs=weight,
retain_graph=True,
create_graph=True,
only_inputs=True)[0]
dydx = dydx.view(dydx.size(0), -1)
dydx_l2norm = torch.sqrt(torch.sum(dydx**2, dim=1))
return torch.mean((dydx_l2norm-1)**2)
def train(self):
# save neptune id to file
assert self.neptune_id is not None
with open(os.path.join(self.log_dir.split("/")[0], 'neptune_id'), 'w') as f:
f.write(self.neptune_id)
# Set data loader.
if self.dataset in ['MedicalData']:
data_loader = self.data_loader
# Fetch fixed inputs for debugging.
data_iter = iter(data_loader)
x_fixedA, x_fixedB = next(data_iter)
x_fixedA = x_fixedA.to(self.device)
x_fixedB = x_fixedB.to(self.device)
# Learning rate cache for decaying.
g_lr = self.g_lr
d_lr = self.d_lr
# Start training from scratch or resume training.
start_iters = 0
if self.resume_iters:
start_iters = self.resume_iters
self.restore_model(self.resume_iters)
# Start training.
print('Start training...')
start_time = time.time()
for i in range(start_iters, self.num_iters):
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
# Fetch real images and labels.
try:
x_realA, x_realB = next(data_iter)
except:
data_iter = iter(data_loader)
x_realA, x_realB = next(data_iter)
x_realA = x_realA.to(self.device) # Input images.
x_realB = x_realB.to(self.device) # Input images.
# =================================================================================== #
# 2. Train the discriminator #
# =================================================================================== #
# Compute loss with real images.
_, out_src = self.D(x_realB)
d_loss_real = - torch.mean(out_src)
# Compute loss with fake images.
mask = self.G(x_realA)
x_fakeB = torch.tanh(x_realA + mask)
_, out_src2 = self.D(x_fakeB.detach())
d_loss_fake =torch.mean(out_src2)
# Compute loss for gradient penalty.
alpha = torch.rand(x_realB.size(0), 1, 1, 1).to(self.device)
x_hat2 = (alpha * x_realB.data + (1 - alpha) * x_fakeB.data).requires_grad_(True)
_, out_src2 = self.D(x_hat2)
d_loss_gp = self.gradient_penalty(out_src2, x_hat2)
# Backward and optimize.
d_loss = d_loss_real + d_loss_fake + self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# Logging.
loss = {}
loss['D/loss_real'] = d_loss_real.item()
loss['D/loss_fake'] = d_loss_fake.item()
loss['D/loss_gp'] = d_loss_gp.item()
# =================================================================================== #
# 3. Train the generator #
# =================================================================================== #
if (i+1) % self.n_critic == 0:
# Original-to-target domain.
maskOT = self.G(x_realA)
x_fakeB2 = torch.tanh(x_realA + maskOT)
_, out_src2 = self.D(x_fakeB2)
g_loss_fake = - torch.mean(out_src2)
# Original-to-original domain.
maskOO = self.G(x_realB)
x_fakeB3 = torch.tanh(x_realB + maskOO)
g_loss_id = torch.mean(torch.abs(x_realB - x_fakeB3))
g_loss = g_loss_fake + self.lambda_id * g_loss_id
self.reset_grad()
g_loss.backward()
self.g_optimizer.step()
# Logging.
loss['G/loss_fake'] = g_loss_fake.item()
loss['G/loss_id'] = g_loss_id.item()
# =================================================================================== #
# 4. Miscellaneous #
# =================================================================================== #
# Print out training information.
if (i+1) % self.log_step == 0:
et = time.time() - start_time
et = str(datetime.timedelta(seconds=et))[:-7]
log = "Elapsed [{}], Iteration [{}/{}]".format(et, i+1, self.num_iters)
for tag, value in loss.items():
log += ", {}: {:.4f}".format(tag, value)
print(log)
if self.use_tensorboard:
self.logger.log(loss)
self.logger.log({'Train/epoch': i + 1})
# Translate fixed images for debugging.
if (i+1) % self.sample_step == 0:
with torch.no_grad():
x_fake_list = [x_fixedA]
mask1 = self.G(x_fixedA)
mask1_ = mask1 - torch.min(mask1)
mask1_ = mask1_ / torch.max(mask1_)
mask1_ = mask1_ * 2
mask1_ = mask1_ - 1
x_fake_list.append(mask1_.repeat(1, 3, 1, 1))
x_fake_list.append(torch.tanh(x_fixedA + mask1))
x_fake_list.append(x_fixedB)
mask2 = self.G(x_fixedB)
mask2_ = mask2 - torch.min(mask2)
mask2_ = mask2_ / torch.max(mask2_)
mask2_ = mask2_ * 2
mask2_ = mask2_ - 1
x_fake_list.append(mask2_.repeat(1, 3, 1, 1))
x_fake_list.append(torch.tanh(x_fixedB + mask2))
x_concat = torch.cat(x_fake_list, dim=3)
sample_path = os.path.join(self.sample_dir, '{}-images.jpg'.format(i+1))
save_image(self.denorm(x_concat.data.cpu()), sample_path, nrow=1, padding=0)
print('Saved real and fake images into {}...'.format(sample_path))
# Save model checkpoints.
if (i+1) % self.model_save_step == 0:
G_path = os.path.join(self.model_save_dir, '{}-G.ckpt'.format(i+1))
D_path = os.path.join(self.model_save_dir, '{}-D.ckpt'.format(i+1))
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
print('Saved model checkpoints into {}...'.format(self.model_save_dir))
# Decay learning rates.
if (i+1) % self.lr_update_step == 0 and (i+1) > (self.num_iters - self.num_iters_decay):
g_lr -= (self.g_lr / float(self.num_iters_decay))
d_lr -= (self.d_lr / float(self.num_iters_decay))
self.update_lr(g_lr, d_lr)
print ('Decayed learning rates, g_lr: {}, d_lr: {}.'.format(g_lr, d_lr))
self.logger.close()
def Find_Optimal_Cutoff(self, target, predicted):
""" Find the optimal probability cutoff point for a classification model related to event rate
Parameters
----------
target : Matrix with dependent or target data, where rows are observations
predicted : Matrix with predicted data, where rows are observations
Returns
-------
list type, with optimal cutoff value
"""
fpr, tpr, threshold = roc_curve(target, predicted)
i = np.arange(len(tpr))
roc = pd.DataFrame({'tf' : pd.Series(tpr-(1-fpr), index=i), 'threshold' : pd.Series(threshold, index=i)})
roc_t = roc.iloc[(roc.tf-0).abs().argsort()[:1]]
return list(roc_t['threshold'])
def testAUCInductive(self):
"""Translate images using Brainomaly trained on a single dataset."""
# Load the trained generator.
self.restore_model(self.test_iters)
assert self.neptune_id is not None, "neptune_id is not defined"
assert self.neptune_key is not None, "neptune_key is not defined"
from data_loader import get_loader
gt_d = {}
meanp_d = {}
for gtv, modev in enumerate(['hea', 'ano']):
# Set data loader.
data_loader = get_loader(self.config.image_dir, self.config.image_size, self.config.batch_size,
'TestValidInductive', self.config.mode + modev, self.config.num_workers)
with torch.no_grad():
for i, (fname, x_realA) in tqdm(enumerate(data_loader), total=len(data_loader)):
imgid = fname[0].split('/')[-1].split('__')[0]
x_realA = x_realA.to(self.device)
gt_d[imgid] = gtv
# Translate images.
mask = self.G(x_realA)
fake = torch.tanh(x_realA + mask)
diff = torch.abs(x_realA - fake)
diff /= 2.
diff = diff.data.cpu().numpy()
meanp = list(np.mean(diff, axis=(1,2,3)))
if imgid in meanp_d:
meanp_d[imgid] += meanp
else:
meanp_d[imgid] = meanp
meanp = []
gt = []
ks = []
for k in gt_d.keys():
ks.append(k)
gt.append(gt_d[k])
meanp.append(np.mean(meanp_d[k]))
thmean = self.Find_Optimal_Cutoff(gt, meanp)[0]
print(f"Threshold: {thmean}")
meanpth = (np.array(meanp)>=thmean)
dfcsv = pd.DataFrame.from_dict({
"pid": ks,
"gt": gt,
"pred": meanp,
"pred_th": meanpth.tolist()
})
csv_path = os.path.join(self.log_dir.split("/")[0], str(self.test_iters)+"_inductive.csv")
dfcsv.to_csv(csv_path, index=False)
print(f"Unique: {np.unique(meanpth)}")
print(f"Classification report:\n{classification_report(gt, meanpth)}\n")
fpr, tpr, threshold = roc_curve(gt, meanp)
tn, fp, fn, tp = confusion_matrix(gt, meanpth).ravel()
specificity = tn / (tn+fp)
sensitivity = tp / (tp+fn)
meanauc = auc(fpr, tpr)
print(f"Model Iter {self.test_iters} AUC: {round(meanauc, 2)}, SEN: {sensitivity}, SPEC: {specificity}")
log_dict = {
self.neptune_key + '/AUC': meanauc,
self.neptune_key + '/SEN': sensitivity,
self.neptune_key + '/SPEC': specificity,
self.neptune_key + '/Threshold': thmean,
self.neptune_key + '/TN': tn,
self.neptune_key + '/FP': fp,
self.neptune_key + '/FN': fn,
self.neptune_key + '/TP': tp,
}
self.logger.log_with_step(int(self.test_iters), log_dict)
self.logger.close()
def testAUCTransductive(self):
"""Translate images using Brainomaly trained on a single dataset."""
# Load the trained generator.
self.restore_model(self.test_iters)
assert self.neptune_id is not None, "neptune_id is not defined"
assert self.neptune_key is not None, "neptune_key is not defined"
from data_loader import get_loader
gt_d = {}
meanp_d = {}
for gtv, modev in enumerate(['hea', 'ano']):
# Set data loader.
data_loader = get_loader(self.config.image_dir, self.config.image_size, self.config.batch_size,
'TestValidTransductive', self.config.mode + modev, self.config.num_workers)
with torch.no_grad():
for i, (fname, x_realA) in tqdm(enumerate(data_loader), total=len(data_loader)):
imgid = fname[0].split('/')[-1].split('__')[0]
x_realA = x_realA.to(self.device)
gt_d[imgid] = gtv
# Translate images.
mask = self.G(x_realA)
fake = torch.tanh(x_realA + mask)
diff = torch.abs(x_realA - fake)
diff /= 2.
diff = diff.data.cpu().numpy()
meanp = list(np.mean(diff, axis=(1, 2, 3)))
if imgid in meanp_d:
meanp_d[imgid] += meanp
else:
meanp_d[imgid] = meanp
meanp = []
gt = []
ks = []
for k in gt_d.keys():
ks.append(k)
gt.append(gt_d[k])
meanp.append(np.mean(meanp_d[k]))
thmean = self.Find_Optimal_Cutoff(gt, meanp)[0]
print(f"Threshold: {thmean}")
meanpth = (np.array(meanp) >= thmean)
dfcsv = pd.DataFrame.from_dict({
"pid": ks,
"gt": gt,
"pred": meanp,
"pred_th": meanpth.tolist()
})
csv_path = os.path.join(self.log_dir.split("/")[0], str(self.test_iters) + "_transductive.csv")
dfcsv.to_csv(csv_path, index=False)
print(f"Unique: {np.unique(meanpth)}")
print(f"Classification report:\n{classification_report(gt, meanpth)}\n")
fpr, tpr, threshold = roc_curve(gt, meanp)
tn, fp, fn, tp = confusion_matrix(gt, meanpth).ravel()
specificity = tn / (tn + fp)
sensitivity = tp / (tp + fn)
meanauc = auc(fpr, tpr)
print(f"Model Iter {self.test_iters} AUC: {round(meanauc, 2)}, SEN: {sensitivity}, SPEC: {specificity}")
log_dict = {
self.neptune_key + '/AUC': meanauc,
self.neptune_key + '/SEN': sensitivity,
self.neptune_key + '/SPEC': specificity,
self.neptune_key + '/Threshold': thmean,
self.neptune_key + '/TN': tn,
self.neptune_key + '/FP': fp,
self.neptune_key + '/FN': fn,
self.neptune_key + '/TP': tp,
}
self.logger.log_with_step(int(self.test_iters), log_dict)
self.logger.close()
def testAUCp(self):
"""Translate images using Brainomaly trained on a single dataset."""
# Load the trained generator.
self.restore_model(self.test_iters)
assert self.neptune_id is not None, "neptune_id is not defined"
assert self.neptune_key is not None, "neptune_key is not defined"
from data_loader import get_loader
gt_d = {}
meanp_d = {}
for gtv, modev in enumerate(['hea', 'ano']):
# Set data loader.
data_loader = get_loader(self.config.image_dir, self.config.image_size, self.config.batch_size,
'testAUCp', self.config.mode + modev, self.config.num_workers)
with torch.no_grad():
for i, (fname, x_realA) in tqdm(enumerate(data_loader), total=len(data_loader)):
imgid = fname[0].split('/')[-1].split('__')[0]
x_realA = x_realA.to(self.device)
gt_d[imgid] = gtv
# Translate images.
mask = self.G(x_realA)
fake = torch.tanh(x_realA + mask)
diff = torch.abs(x_realA - fake)
diff /= 2.
diff = diff.data.cpu().numpy()
meanp = list(np.mean(diff, axis=(1, 2, 3)))
if imgid in meanp_d:
meanp_d[imgid] += meanp
else:
meanp_d[imgid] = meanp
meanp = []
gt = []
ks = []
for k in gt_d.keys():
ks.append(k)
gt.append(gt_d[k])
meanp.append(np.mean(meanp_d[k]))
thmean = self.Find_Optimal_Cutoff(gt, meanp)[0]
print(f"Thresholdp: {thmean}")
meanpth = (np.array(meanp) >= thmean)
dfcsv = pd.DataFrame.from_dict({
"pid": ks,
"gt": gt,
"pred": meanp,
"pred_th": meanpth.tolist()
})
csv_path = os.path.join(self.log_dir.split("/")[0], str(self.test_iters) + "_aucp.csv")
dfcsv.to_csv(csv_path, index=False)
print(f"Unique: {np.unique(meanpth)}")
print(f"Classification report:\n{classification_report(gt, meanpth)}\n")
fpr, tpr, threshold = roc_curve(gt, meanp)
tn, fp, fn, tp = confusion_matrix(gt, meanpth).ravel()
specificity = tn / (tn + fp)
sensitivity = tp / (tp + fn)
meanauc = auc(fpr, tpr)
print(f"Model Iter {self.test_iters} AUCp: {round(meanauc, 2)}, SENp: {sensitivity}, SPECp: {specificity}")
log_dict = {
self.neptune_key + '/AUCp': meanauc,
self.neptune_key + '/SENp': sensitivity,
self.neptune_key + '/SPECp': specificity,
self.neptune_key + '/Thresholdp': thmean,
self.neptune_key + '/TNp': tn,
self.neptune_key + '/FPp': fp,
self.neptune_key + '/FNp': fn,
self.neptune_key + '/TPp': tp,
}
self.logger.log_with_step(int(self.test_iters), log_dict)
self.logger.close()