-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
70 lines (55 loc) · 2.45 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import shutil
from pathlib import Path
from pprint import pprint
import yaml
import tensorflow as tf
from utils.dataset_factory import DatasetBuilder
from model.model import Model
from utils.loss import CTCLoss
from utils.metrics import SequenceAccuracy
from utils.callbacks import XTensorBoard
def train(config_file, save_dir, model_path):
with open(config_file, 'r') as configs:
config = yaml.load(configs, Loader=yaml.Loader)['train']
pprint(config)
strategy = tf.distribute.MirroredStrategy()
batch_size = \
config['batch_size_per_replica'] * strategy.num_replicas_in_sync
dataset_builder = DatasetBuilder(**config['dataset_builder'])
train_ds = dataset_builder.build(
config['train_ann_paths'], batch_size, True)
val_ds = dataset_builder.build(config['val_ann_paths'], batch_size, False)
model_class = Model(config['dataset_builder']['img_shape'],
dataset_builder.num_classes)
model = model_class.build()
model.compile(optimizer=tf.keras.optimizers.Adam(config['learning_rate']),
loss=CTCLoss(), metrics=[SequenceAccuracy()])
if config['restore']:
model.load_weights(config['restore'], by_name=True, skip_mismatch=True)
callbacks = [
tf.keras.callbacks.ModelCheckpoint(model_path),
tf.keras.callbacks.ReduceLROnPlateau(**config['reduce_lr']),
XTensorBoard(log_dir=str(save_dir), **config['tensorboard'])]
model.fit(train_ds, epochs=config['epochs'], callbacks=callbacks,
validation_data=val_ds)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--config', type=Path, required=True,
help='The config file path.')
parser.add_argument(
'--save_dir', type=Path, required=True,
help='The path to save the model, config file and logs')
args = parser.parse_args()
args.save_dir.mkdir(exist_ok=True)
if list(args.save_dir.iterdir()):
raise ValueError(f'{args.save_dir} is not a empty folder')
shutil.copy(args.config, args.save_dir / args.config.name)
prefix = '{epoch}_{sequence_accuracy:.4f}_{val_sequence_accuracy:.4f}'
model_path = f'{args.save_dir}/{prefix}.h5'
config = tf.compat.v1.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
tf.compat.v1.keras.backend.set_session(
tf.compat.v1.Session(config=config))
train(args.config, args.save_dir, model_path)