-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrseFCM.py
281 lines (255 loc) · 7.98 KB
/
rseFCM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# resFCM算法
import copy
import math
import random
import time
# 数据地址 http://archive.ics.uci.edu/ml/machine-learning-databases/iris/
# 用于初始化隶属度矩阵U
global MAX
MAX = 10000.0
# 用于结束条件
global Epsilon
Epsilon = 0.00000001
def import_data_sample_iris(file, num):
"""
采样数据,前四列为data,最后一列为cluster_location,每类随机抽取25行数据
"""
data = []
cluster_location =[]
with open(str(file), 'r') as f:
ff = list(f)
# f1 = random.sample(list(ff[0:50]),num)#每类随机选取其中的num行数据
# f2 = random.sample(list(ff[50:100]),num)
# f3 = random.sample(list(ff[100:151]),num)
# nf = f1 + f2 + f3
nf = random.sample(ff, num)
for line in nf:
current = line.strip().split(",")
current_dummy = []
for j in range(0, len(current)-1):
current_dummy.append(float(current[j]))
j += 1
if current[j] == "Iris-setosa":
cluster_location.append(0)
elif current[j] == "Iris-versicolor":
cluster_location.append(1)
else:
cluster_location.append(2)
data.append(current_dummy)
# print_matrix(data)
# print_matrix(cluster_location)
print ("抽样数据加载完毕")
print ("在150个数据中随机抽样:" + str(num) + "个数据")
return data , cluster_location
def import_data_full_iris(file):
"""
全部数据,前四列为data,最后一列为cluster_location
"""
datafull = []
cluster_locationfull =[]
with open(str(file), 'r') as f:
for line in f:
current = line.strip().split(",")
current_dummy = []
for j in range(0, len(current)-1):
current_dummy.append(float(current[j]))
j += 1
if current[j] == "Iris-setosa":
cluster_locationfull.append(0)
elif current[j] == "Iris-versicolor":
cluster_locationfull.append(1)
else:
cluster_locationfull.append(2)
datafull.append(current_dummy)
# print_matrix(datafull)
# print_matrix(cluster_locationfull)
# print ("加载数据完毕")
return datafull , cluster_locationfull
def randomise_data(data):
"""
该功能将数据随机化,并保持随机化顺序的记录
"""
order = list(range(0, len(data)))
random.shuffle(order)# 用于将一个列表中的元素打乱
new_data = [[] for i in range(0, len(data))]
for index in range(0, len(order)):
new_data[index] = data[order[index]]
# print_matrix(new_data)
return new_data, order
def de_randomise_data(data, order):
"""
此函数将返回数据的原始顺序,将randomise_data()返回的order列表作为参数
"""
new_data = [[]for i in range(0, len(data))]
for index in range(len(order)):
new_data[order[index]] = data[index]
return new_data
def print_matrix(list):
"""
以可重复的方式打印矩阵
"""
for i in range(0, len(list)):
print (list[i])
def initialise_U(data_L, cluster_number):
"""
这个函数是隶属度矩阵U的每行加起来都为1. 此处需要一个全局变量MAX.
"""
global MAX
U = []
for i in range(0, data_L):
current = []
rand_sum = 0.0
for j in range(0, cluster_number):
dummy = random.randint(1,int(MAX))
# random.randint(a,b):用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,生成的随机数n:a<=n<=b
current.append(dummy)
rand_sum += dummy
for j in range(0, cluster_number):
current[j] = current[j] / rand_sum
U.append(current)
return U
def distance(point, center):
"""
该函数计算2点之间的距离(作为列表)。我们指欧几里德距离。 闵可夫斯基距离
"""
if len(point) != len(center):
return -1
dummy = 0.0
for i in range(0, len(point)):
dummy += abs(point[i] - center[i]) ** 2
return math.sqrt(dummy)
def end_conditon(U, U_old):
"""
结束条件。当U矩阵随着连续迭代停止变化时,触发结束
"""
global Epsilon
for i in range(0, len(U)):
for j in range(0, len(U[0])):
if abs(U[i][j] - U_old[i][j]) > Epsilon :
return False
return True
def normalise_U(U):
"""
在聚类结束时使U模糊化。每个样本的隶属度最大的为1,其余为0
"""
for i in range(0, len(U)):
maximum = max(U[i])
for j in range(0, len(U[0])):
if U[i][j] != maximum:
U[i][j] = 0
else:
U[i][j] = 1
return U
# m的最佳取值范围为[1.5,2.5]
def fuzzy(data, datafull_L, cluster_number, m):
"""
这是主函数,它将计算所需的聚类中心,并返回最终的归一化隶属矩阵U.
参数是:簇数(cluster_number)和隶属度的因子(m)
"""
# 初始化隶属度矩阵U
U = initialise_U(datafull_L, cluster_number)
# print_matrix(U)
# 迭代次数
iteration_num = 0
# 循环更新U
while (True):
# 迭代次数
iteration_num += 1
# 创建它的副本,以检查结束条件
U_old = copy.deepcopy(U)
# 计算聚类中心
C = []
for j in range(0, cluster_number):
current_cluster_center = []
for i in range(0, len(data[0])):
dummy_sum_num = 0.0
dummy_sum_dum = 0.0
for k in range(0, len(data)):
# 分子
dummy_sum_num += (U[k][j] ** m) * data[k][i]
# 分母
dummy_sum_dum += (U[k][j] ** m)
# 第i列的聚类中心
current_cluster_center.append(dummy_sum_num/dummy_sum_dum)
# 第j簇的所有聚类中心
C.append(current_cluster_center)
# print_matrix(C)
# 创建一个距离向量, 用于计算U矩阵。
distance_matrix =[]
for i in range(0, len(data)):
current = []
for j in range(0, cluster_number):
current.append(distance(data[i], C[j]))
distance_matrix.append(current)
# 更新U
for j in range(0, cluster_number):
for i in range(0, len(data)):
dummy = 0.0
for k in range(0, cluster_number):
# 分母
dummy += (distance_matrix[i][j ] / distance_matrix[i][k]) ** (2/(m-1))
U[i][j] = 1 / dummy
if end_conditon(U, U_old):
print ("结束抽样的聚类")
break
print ("迭代次数:" + str(iteration_num))
return U, C
def extension(data, cluster_number, m, C):
"""
用抽样样本得到的U扩展到整个数据集上,参数包括隶属度矩阵U和聚类中心C
"""
# 创建一个距离向量, 用于计算U矩阵。
distance_matrix =[]
for i in range(0, len(data)):
current = []
for j in range(0, cluster_number):
current.append(distance(data[i], C[j]))
distance_matrix.append(current)
# 初始化U
U = [[0]*cluster_number for i in range(len(data))]
# 更新U
for j in range(0, cluster_number):
for i in range(0, len(data)):
dummy = 0.0
for k in range(0, cluster_number):
# 分母
dummy += (distance_matrix[i][j] / distance_matrix[i][k]) ** (2/(m-1))
U[i][j] = 1 / dummy
print ("拓展到整个数据集上")
print ("标准化 U")
U = normalise_U(U)
return U
def checker_iris(final_location):
"""
和真实的聚类结果进行校验比对
"""
right = 0.0
for k in range(0, 3):
checker =[0,0,0]
for i in range(0, 50):
for j in range(0, len(final_location[0])):
if final_location[i + (50*k)][j] == 1:
checker[j] += 1
right += max(checker)
print("正确聚类的数量:" + str(right))
answer = right / 150 * 100
return "准确度:" + str(answer) + "%"
if __name__ == '__main__':
# 加载抽样的数据
data, cluster_location = import_data_sample_iris("iris.txt", 15)
# 加载完整数据
datafull, cluster_locationfull = import_data_full_iris("iris.txt")
# 随机化数据
data , order = randomise_data(data)
# print_matrix(data)
start = time.time()
# 现在我们有一个名为data的列表,它只是数字
# 我们还有另一个名为cluster_location的列表,它给出了正确的聚类结果位置
# 调用模糊C均值函数
U, C = fuzzy(data, len(datafull), 3, 2)
# 扩展到整个数据集
final_location = extension(datafull, 3, 2, C)
#print_matrix(final_location)
# 准确度分析
print (checker_iris(final_location))
print ("用时:{0}".format(time.time() - start))