-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathindex.js
323 lines (288 loc) · 8.35 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/**
* A standalone point geometry with useful accessor, comparison, and
* modification methods.
*
* @class
* @param {number} x the x-coordinate. This could be longitude or screen pixels, or any other sort of unit.
* @param {number} y the y-coordinate. This could be latitude or screen pixels, or any other sort of unit.
*
* @example
* const point = new Point(-77, 38);
*/
export default function Point(x, y) {
this.x = x;
this.y = y;
}
Point.prototype = {
/**
* Clone this point, returning a new point that can be modified
* without affecting the old one.
* @return {Point} the clone
*/
clone() { return new Point(this.x, this.y); },
/**
* Add this point's x & y coordinates to another point,
* yielding a new point.
* @param {Point} p the other point
* @return {Point} output point
*/
add(p) { return this.clone()._add(p); },
/**
* Subtract this point's x & y coordinates to from point,
* yielding a new point.
* @param {Point} p the other point
* @return {Point} output point
*/
sub(p) { return this.clone()._sub(p); },
/**
* Multiply this point's x & y coordinates by point,
* yielding a new point.
* @param {Point} p the other point
* @return {Point} output point
*/
multByPoint(p) { return this.clone()._multByPoint(p); },
/**
* Divide this point's x & y coordinates by point,
* yielding a new point.
* @param {Point} p the other point
* @return {Point} output point
*/
divByPoint(p) { return this.clone()._divByPoint(p); },
/**
* Multiply this point's x & y coordinates by a factor,
* yielding a new point.
* @param {number} k factor
* @return {Point} output point
*/
mult(k) { return this.clone()._mult(k); },
/**
* Divide this point's x & y coordinates by a factor,
* yielding a new point.
* @param {number} k factor
* @return {Point} output point
*/
div(k) { return this.clone()._div(k); },
/**
* Rotate this point around the 0, 0 origin by an angle a,
* given in radians
* @param {number} a angle to rotate around, in radians
* @return {Point} output point
*/
rotate(a) { return this.clone()._rotate(a); },
/**
* Rotate this point around p point by an angle a,
* given in radians
* @param {number} a angle to rotate around, in radians
* @param {Point} p Point to rotate around
* @return {Point} output point
*/
rotateAround(a, p) { return this.clone()._rotateAround(a, p); },
/**
* Multiply this point by a 4x1 transformation matrix
* @param {[number, number, number, number]} m transformation matrix
* @return {Point} output point
*/
matMult(m) { return this.clone()._matMult(m); },
/**
* Calculate this point but as a unit vector from 0, 0, meaning
* that the distance from the resulting point to the 0, 0
* coordinate will be equal to 1 and the angle from the resulting
* point to the 0, 0 coordinate will be the same as before.
* @return {Point} unit vector point
*/
unit() { return this.clone()._unit(); },
/**
* Compute a perpendicular point, where the new y coordinate
* is the old x coordinate and the new x coordinate is the old y
* coordinate multiplied by -1
* @return {Point} perpendicular point
*/
perp() { return this.clone()._perp(); },
/**
* Return a version of this point with the x & y coordinates
* rounded to integers.
* @return {Point} rounded point
*/
round() { return this.clone()._round(); },
/**
* Return the magnitude of this point: this is the Euclidean
* distance from the 0, 0 coordinate to this point's x and y
* coordinates.
* @return {number} magnitude
*/
mag() {
return Math.sqrt(this.x * this.x + this.y * this.y);
},
/**
* Judge whether this point is equal to another point, returning
* true or false.
* @param {Point} other the other point
* @return {boolean} whether the points are equal
*/
equals(other) {
return this.x === other.x &&
this.y === other.y;
},
/**
* Calculate the distance from this point to another point
* @param {Point} p the other point
* @return {number} distance
*/
dist(p) {
return Math.sqrt(this.distSqr(p));
},
/**
* Calculate the distance from this point to another point,
* without the square root step. Useful if you're comparing
* relative distances.
* @param {Point} p the other point
* @return {number} distance
*/
distSqr(p) {
const dx = p.x - this.x,
dy = p.y - this.y;
return dx * dx + dy * dy;
},
/**
* Get the angle from the 0, 0 coordinate to this point, in radians
* coordinates.
* @return {number} angle
*/
angle() {
return Math.atan2(this.y, this.x);
},
/**
* Get the angle from this point to another point, in radians
* @param {Point} b the other point
* @return {number} angle
*/
angleTo(b) {
return Math.atan2(this.y - b.y, this.x - b.x);
},
/**
* Get the angle between this point and another point, in radians
* @param {Point} b the other point
* @return {number} angle
*/
angleWith(b) {
return this.angleWithSep(b.x, b.y);
},
/**
* Find the angle of the two vectors, solving the formula for
* the cross product a x b = |a||b|sin(θ) for θ.
* @param {number} x the x-coordinate
* @param {number} y the y-coordinate
* @return {number} the angle in radians
*/
angleWithSep(x, y) {
return Math.atan2(
this.x * y - this.y * x,
this.x * x + this.y * y);
},
/** @param {[number, number, number, number]} m */
_matMult(m) {
const x = m[0] * this.x + m[1] * this.y,
y = m[2] * this.x + m[3] * this.y;
this.x = x;
this.y = y;
return this;
},
/** @param {Point} p */
_add(p) {
this.x += p.x;
this.y += p.y;
return this;
},
/** @param {Point} p */
_sub(p) {
this.x -= p.x;
this.y -= p.y;
return this;
},
/** @param {number} k */
_mult(k) {
this.x *= k;
this.y *= k;
return this;
},
/** @param {number} k */
_div(k) {
this.x /= k;
this.y /= k;
return this;
},
/** @param {Point} p */
_multByPoint(p) {
this.x *= p.x;
this.y *= p.y;
return this;
},
/** @param {Point} p */
_divByPoint(p) {
this.x /= p.x;
this.y /= p.y;
return this;
},
_unit() {
this._div(this.mag());
return this;
},
_perp() {
const y = this.y;
this.y = this.x;
this.x = -y;
return this;
},
/** @param {number} angle */
_rotate(angle) {
const cos = Math.cos(angle),
sin = Math.sin(angle),
x = cos * this.x - sin * this.y,
y = sin * this.x + cos * this.y;
this.x = x;
this.y = y;
return this;
},
/**
* @param {number} angle
* @param {Point} p
*/
_rotateAround(angle, p) {
const cos = Math.cos(angle),
sin = Math.sin(angle),
x = p.x + cos * (this.x - p.x) - sin * (this.y - p.y),
y = p.y + sin * (this.x - p.x) + cos * (this.y - p.y);
this.x = x;
this.y = y;
return this;
},
_round() {
this.x = Math.round(this.x);
this.y = Math.round(this.y);
return this;
},
constructor: Point
};
/**
* Construct a point from an array if necessary, otherwise if the input
* is already a Point, return it unchanged.
* @param {Point | [number, number] | {x: number, y: number}} p input value
* @return {Point} constructed point.
* @example
* // this
* var point = Point.convert([0, 1]);
* // is equivalent to
* var point = new Point(0, 1);
*/
Point.convert = function (p) {
if (p instanceof Point) {
return /** @type {Point} */ (p);
}
if (Array.isArray(p)) {
return new Point(+p[0], +p[1]);
}
if (p.x !== undefined && p.y !== undefined) {
return new Point(+p.x, +p.y);
}
throw new Error('Expected [x, y] or {x, y} point format');
};