-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathminigpt.py
264 lines (214 loc) · 7.44 KB
/
minigpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import torch
import torch.nn as nn
from torch.nn import functional as F
# hyperparameters
batch_size = 32 # how many independent sequences will we process in parallel?
block_size = 32 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 100
learning_rate = 1e-3
device = "cuda" if torch.cuda.is_available() else "cpu"
eval_iters = 200
n_embd = 64
n_head = 4
n_layer = 4
dropout = 0.20
# ------------
torch.manual_seed(1337)
with open("./data/shakespeare.txt", "r", encoding="utf-8") as f:
text = f.read()
# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: [
stoi[c] for c in s
] # encoder: take a string, output a list of integers
decode = lambda l: "".join(
[itos[i] for i in l]
) # decoder: take a list of integers, output a string
# Train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
# data loading
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == "train" else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
class DummyModel(nn.Module):
def __init__(self, vocab_sizes):
super().__init__()
self.embedding_layer = nn.Embedding(vocab_size, vocab_size)
def forward(self, x, targets=None):
logits = self.embedding_layer(x)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
# Estimate loss function
# For train and eval split (output a dict)
# Set model to eval and then back to train
# Evaluate loss over multiple batch attempts
# model is global
@torch.no_grad()
def estimate_loss():
loss = {}
splits = ["train", "val"]
model.eval()
for split in splits:
losses = []
for _ in range(eval_iters):
x, y = get_batch(split)
_, l = model(x, y)
losses.append(l)
losses = torch.tensor(losses)
loss[split] = torch.mean(losses).item()
model.train()
return loss
# Build a head of self-attention model
# Needs to have the key, query and value matrix
# Register a triangular 1 matrix as a buffer (to preserve sequential info)
# Standardize with softmax and use dropout layer on the wei matrix
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.query = nn.Linear(n_embd, head_size)
self.key = nn.Linear(n_embd, head_size)
self.value = nn.Linear(n_embd, head_size)
self.register_buffer("tril", torch.tril(torch.ones((block_size, block_size))))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
query = self.query(x)
key = self.key(x)
wei = query @ key.transpose(-2, -1) * C**0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf"))
wei = F.softmax(wei, -1)
wei = self.dropout(wei)
value = self.value(x)
out = wei @ value
return out
# Create multi-head module
# Has a list of heads layer
# Forward concatenate the heads and then dropout on (projection of x)
class MultiHead(nn.Module):
def __init__(self, n_head, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(n_head)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = torch.cat([head(x) for head in self.heads], dim=-1)
x = self.dropout(self.proj(x))
return x
# Implement two layers feedfoward with non linearity (relu in middle)
# + dropout at the hand (Sequential net)
class FeedForward(nn.Module):
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, n_embd * 4),
nn.ReLU(),
nn.Linear(n_embd * 4, n_embd),
nn.Dropout(),
)
def forward(self, x):
x = self.net(x)
return x
# Assemble the war beast
# The block
# head_size: head_size * n_head = n_embd
# The Multi-Head
# The ff net
# Two normalization layer
# The original embedding data is passed to along the
# multi-head/ffnet output
class Block(nn.Module):
def __init__(self, n_head, n_embd):
super().__init__()
head_size = n_embd // n_head
self.mh = MultiHead(n_head, head_size)
self.ffwd = FeedForward(n_embd)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.mh(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
# BabyPt model
# one embedding table
# one positional table
# n_layer Blocks
# layer norm again
# Linear output layer
# For generation
# Logit of last time step
# Crop provided idx to block size
# Last step concat the predicted idx recursively
# So forward and generate methods
class BabyPT(nn.Module):
def __init__(self, n_embd):
super().__init__()
self.token_embedding = nn.Embedding(vocab_size, n_embd)
self.positional_embedding = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_head, n_embd) for _ in range(n_layer)])
self.ln = nn.LayerNorm(n_embd)
self.linear_head = nn.Linear(n_embd, vocab_size)
def forward(self, x, targets=None):
x = self.token_embedding(x)
x = x + self.positional_embedding(
torch.tensor([T for T in range(x.shape[1])]).to(device)
)
x = self.blocks(x)
x = self.ln(x)
x = self.linear_head(x)
if targets is None:
loss = None
else:
B, T, C = x.shape
x = x.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(x, targets)
return x, loss
def generate(self, idx, max_token):
for _ in range(max_token):
idx_cond = idx[:, -block_size:]
x, _ = self.forward(idx_cond)
# Last available time-step
x = x[:, -1, :]
probs = torch.softmax(x, dim=-1)
idx_new = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_new), dim=-1)
return decode(idx.cpu().numpy().ravel())
# Gotta add a training routine now
if __name__ == "__main__":
x, y = get_batch("train")
x, y = x.to(device), y.to(device)
model = BabyPT(n_embd).to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=2e-4)
n_epochs = 50000
for epoch in range(n_epochs):
logit, loss = model(x, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
loss, current = loss.item(), epoch
print(f"loss: {loss:>7f}, {epoch}")
y_hat = model.eval().generate(
torch.tensor([15]).to(device).reshape(1, 1), 500
)
model.train()
print(y_hat)