-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathMatrixGFXDemo.ino
719 lines (636 loc) · 25.3 KB
/
MatrixGFXDemo.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
// SmartMatrix_GFX example for single NeoPixel Shield.
// By Marc MERLIN <[email protected]>
// Contains code (c) Adafruit, license BSD
// Please see the other demos and FastLED_NeoMatrix_SmartMatrix_LEDMatrix_GFX_Demos/neomatrix_config.h
// on how to avoid having all the config pasted in all your scripts.
#include <Adafruit_GFX.h>
#include <SmartMatrix_GFX.h>
// CHANGEME for ESP32, see MatrixHardware_ESP32_V0.h in SmartMatrix/src
#define GPIOPINOUT 8
#ifdef SMARTMATRIXV3
#include <SmartLEDShieldV4.h>
#include <SmartMatrix3.h>
#else // As of 2020/11, SmartMatrix v4 has a new interface
// https://community.pixelmatix.com/t/smartmatrix-library-4-0-changes-to-matrixhardware-includes/709
#ifdef ESP32
#include <MatrixHardware_ESP32_V0.h> // ESP32
#else
#include <MatrixHardware_KitV4.h> // Teensy shield v4
#endif
#include <SmartMatrix.h>
#endif
// Choose your prefered pixmap
//#include "heart24.h"
//#include "yellowsmiley24.h"
//#include "bluesmiley24.h"
#include "smileytongue24.h"
#include "google32.h"
// Anything with black does not look so good with the naked eye (better on pictures)
//#include "linux32.h"
// ========================== CONFIG START ===================================================
/// SmartMatrix Defines
#define COLOR_DEPTH 24 // known working: 24, 48 - If the sketch uses type `rgb24` directly, COLOR_DEPTH must be 24
#define kMatrixWidth 64 // known working: 32, 64, 96, 128
#define kMatrixHeight 96 // known working: 16, 32, 48, 64
const uint8_t kRefreshDepth = 24; // known working: 24, 36, 48
const uint8_t kDmaBufferRows = 2; // known working: 2-4, use 2 to save memory, more to keep from dropping frames and automatically lowering refresh rate
const uint8_t kPanelType = SMARTMATRIX_HUB75_32ROW_MOD16SCAN; // use SMARTMATRIX_HUB75_16ROW_MOD8SCAN for common 16x32 panels
//const uint8_t kPanelType = SMARTMATRIX_HUB75_64ROW_MOD32SCAN;
const uint8_t kMatrixOptions = (SMARTMATRIX_OPTIONS_NONE); // see http://docs.pixelmatix.com/SmartMatrix for options
const uint8_t kBackgroundLayerOptions = (SM_BACKGROUND_OPTIONS_NONE);
SMARTMATRIX_ALLOCATE_BUFFERS(matrixLayer, kMatrixWidth, kMatrixHeight, kRefreshDepth, kDmaBufferRows, kPanelType, kMatrixOptions);
SMARTMATRIX_ALLOCATE_BACKGROUND_LAYER(backgroundLayer, kMatrixWidth, kMatrixHeight, COLOR_DEPTH, kBackgroundLayerOptions);
const int defaultBrightness = (100*255)/100; // full (100%) brightness
//const int defaultBrightness = (15*255)/100; // dim: 15% brightness
#define mw kMatrixWidth
#define mh kMatrixHeight
#define NUMMATRIX (kMatrixWidth*kMatrixHeight)
CRGB *matrixleds;
void show_callback();
SmartMatrix_GFX *matrix = new SmartMatrix_GFX(matrixleds, mw, mh, show_callback);
// Sadly this callback function must be copied around with this init code
void show_callback() {
backgroundLayer.swapBuffers(true);
matrixleds = (CRGB *)backgroundLayer.backBuffer();
matrix->newLedsPtr(matrixleds);
}
// ========================== CONFIG END ======================================================
// This could also be defined as matrix->color(255,0,0) but those defines
// are meant to work for adafruit_gfx backends that are lacking color()
#define LED_BLACK 0
#define LED_RED_VERYLOW (3 << 11)
#define LED_RED_LOW (7 << 11)
#define LED_RED_MEDIUM (15 << 11)
#define LED_RED_HIGH (31 << 11)
#define LED_GREEN_VERYLOW (1 << 5)
#define LED_GREEN_LOW (15 << 5)
#define LED_GREEN_MEDIUM (31 << 5)
#define LED_GREEN_HIGH (63 << 5)
#define LED_BLUE_VERYLOW 3
#define LED_BLUE_LOW 7
#define LED_BLUE_MEDIUM 15
#define LED_BLUE_HIGH 31
#define LED_ORANGE_VERYLOW (LED_RED_VERYLOW + LED_GREEN_VERYLOW)
#define LED_ORANGE_LOW (LED_RED_LOW + LED_GREEN_LOW)
#define LED_ORANGE_MEDIUM (LED_RED_MEDIUM + LED_GREEN_MEDIUM)
#define LED_ORANGE_HIGH (LED_RED_HIGH + LED_GREEN_HIGH)
#define LED_PURPLE_VERYLOW (LED_RED_VERYLOW + LED_BLUE_VERYLOW)
#define LED_PURPLE_LOW (LED_RED_LOW + LED_BLUE_LOW)
#define LED_PURPLE_MEDIUM (LED_RED_MEDIUM + LED_BLUE_MEDIUM)
#define LED_PURPLE_HIGH (LED_RED_HIGH + LED_BLUE_HIGH)
#define LED_CYAN_VERYLOW (LED_GREEN_VERYLOW + LED_BLUE_VERYLOW)
#define LED_CYAN_LOW (LED_GREEN_LOW + LED_BLUE_LOW)
#define LED_CYAN_MEDIUM (LED_GREEN_MEDIUM + LED_BLUE_MEDIUM)
#define LED_CYAN_HIGH (LED_GREEN_HIGH + LED_BLUE_HIGH)
#define LED_WHITE_VERYLOW (LED_RED_VERYLOW + LED_GREEN_VERYLOW + LED_BLUE_VERYLOW)
#define LED_WHITE_LOW (LED_RED_LOW + LED_GREEN_LOW + LED_BLUE_LOW)
#define LED_WHITE_MEDIUM (LED_RED_MEDIUM + LED_GREEN_MEDIUM + LED_BLUE_MEDIUM)
#define LED_WHITE_HIGH (LED_RED_HIGH + LED_GREEN_HIGH + LED_BLUE_HIGH)
static const uint8_t PROGMEM
mono_bmp[][8] =
{
{ // 0: checkered 1
B10101010,
B01010101,
B10101010,
B01010101,
B10101010,
B01010101,
B10101010,
B01010101,
},
{ // 1: checkered 2
B01010101,
B10101010,
B01010101,
B10101010,
B01010101,
B10101010,
B01010101,
B10101010,
},
{ // 2: smiley
B00111100,
B01000010,
B10100101,
B10000001,
B10100101,
B10011001,
B01000010,
B00111100 },
{ // 3: neutral
B00111100,
B01000010,
B10100101,
B10000001,
B10111101,
B10000001,
B01000010,
B00111100 },
{ // 4; frowny
B00111100,
B01000010,
B10100101,
B10000001,
B10011001,
B10100101,
B01000010,
B00111100 },
};
static const uint16_t PROGMEM
// These bitmaps were written for a backend that only supported
// 4 bits per color with Blue/Green/Red ordering while neomatrix
// uses native 565 color mapping as RGB.
// I'm leaving the arrays as is because it's easier to read
// which color is what when separated on a 4bit boundary
// The demo code will modify the arrays at runtime to be compatible
// with the neomatrix color ordering and bit depth.
RGB_bmp[][64] = {
// 00: blue, blue/red, red, red/green, green, green/blue, blue, white
{ 0x100, 0x200, 0x300, 0x400, 0x600, 0x800, 0xA00, 0xF00,
0x101, 0x202, 0x303, 0x404, 0x606, 0x808, 0xA0A, 0xF0F,
0x001, 0x002, 0x003, 0x004, 0x006, 0x008, 0x00A, 0x00F,
0x011, 0x022, 0x033, 0x044, 0x066, 0x088, 0x0AA, 0x0FF,
0x010, 0x020, 0x030, 0x040, 0x060, 0x080, 0x0A0, 0x0F0,
0x110, 0x220, 0x330, 0x440, 0x660, 0x880, 0xAA0, 0xFF0,
0x100, 0x200, 0x300, 0x400, 0x600, 0x800, 0xA00, 0xF00,
0x111, 0x222, 0x333, 0x444, 0x666, 0x888, 0xAAA, 0xFFF, },
// 01: grey to white
{ 0x111, 0x222, 0x333, 0x555, 0x777, 0x999, 0xAAA, 0xFFF,
0x222, 0x222, 0x333, 0x555, 0x777, 0x999, 0xAAA, 0xFFF,
0x333, 0x333, 0x333, 0x555, 0x777, 0x999, 0xAAA, 0xFFF,
0x555, 0x555, 0x555, 0x555, 0x777, 0x999, 0xAAA, 0xFFF,
0x777, 0x777, 0x777, 0x777, 0x777, 0x999, 0xAAA, 0xFFF,
0x999, 0x999, 0x999, 0x999, 0x999, 0x999, 0xAAA, 0xFFF,
0xAAA, 0xAAA, 0xAAA, 0xAAA, 0xAAA, 0xAAA, 0xAAA, 0xFFF,
0xFFF, 0xFFF, 0xFFF, 0xFFF, 0xFFF, 0xFFF, 0xFFF, 0xFFF, },
// 02: low red to high red
{ 0x001, 0x002, 0x003, 0x005, 0x007, 0x009, 0x00A, 0x00F,
0x002, 0x002, 0x003, 0x005, 0x007, 0x009, 0x00A, 0x00F,
0x003, 0x003, 0x003, 0x005, 0x007, 0x009, 0x00A, 0x00F,
0x005, 0x005, 0x005, 0x005, 0x007, 0x009, 0x00A, 0x00F,
0x007, 0x007, 0x007, 0x007, 0x007, 0x009, 0x00A, 0x00F,
0x009, 0x009, 0x009, 0x009, 0x009, 0x009, 0x00A, 0x00F,
0x00A, 0x00A, 0x00A, 0x00A, 0x00A, 0x00A, 0x00A, 0x00F,
0x00F, 0x00F, 0x00F, 0x00F, 0x00F, 0x00F, 0x00F, 0x00F, },
// 03: low green to high green
{ 0x010, 0x020, 0x030, 0x050, 0x070, 0x090, 0x0A0, 0x0F0,
0x020, 0x020, 0x030, 0x050, 0x070, 0x090, 0x0A0, 0x0F0,
0x030, 0x030, 0x030, 0x050, 0x070, 0x090, 0x0A0, 0x0F0,
0x050, 0x050, 0x050, 0x050, 0x070, 0x090, 0x0A0, 0x0F0,
0x070, 0x070, 0x070, 0x070, 0x070, 0x090, 0x0A0, 0x0F0,
0x090, 0x090, 0x090, 0x090, 0x090, 0x090, 0x0A0, 0x0F0,
0x0A0, 0x0A0, 0x0A0, 0x0A0, 0x0A0, 0x0A0, 0x0A0, 0x0F0,
0x0F0, 0x0F0, 0x0F0, 0x0F0, 0x0F0, 0x0F0, 0x0F0, 0x0F0, },
// 04: low blue to high blue
{ 0x100, 0x200, 0x300, 0x500, 0x700, 0x900, 0xA00, 0xF00,
0x200, 0x200, 0x300, 0x500, 0x700, 0x900, 0xA00, 0xF00,
0x300, 0x300, 0x300, 0x500, 0x700, 0x900, 0xA00, 0xF00,
0x500, 0x500, 0x500, 0x500, 0x700, 0x900, 0xA00, 0xF00,
0x700, 0x700, 0x700, 0x700, 0x700, 0x900, 0xA00, 0xF00,
0x900, 0x900, 0x900, 0x900, 0x900, 0x900, 0xA00, 0xF00,
0xA00, 0xA00, 0xA00, 0xA00, 0xA00, 0xA00, 0xA00, 0xF00,
0xF00, 0xF00, 0xF00, 0xF00, 0xF00, 0xF00, 0xF00, 0xF00, },
// 05: 1 black, 2R, 2O, 2G, 1B with 4 blue lines rising right
{ 0x000, 0x200, 0x000, 0x400, 0x000, 0x800, 0x000, 0xF00,
0x000, 0x201, 0x002, 0x403, 0x004, 0x805, 0x006, 0xF07,
0x008, 0x209, 0x00A, 0x40B, 0x00C, 0x80D, 0x00E, 0xF0F,
0x000, 0x211, 0x022, 0x433, 0x044, 0x855, 0x066, 0xF77,
0x088, 0x299, 0x0AA, 0x4BB, 0x0CC, 0x8DD, 0x0EE, 0xFFF,
0x000, 0x210, 0x020, 0x430, 0x040, 0x850, 0x060, 0xF70,
0x080, 0x290, 0x0A0, 0x4B0, 0x0C0, 0x8D0, 0x0E0, 0xFF0,
0x000, 0x200, 0x000, 0x500, 0x000, 0x800, 0x000, 0xF00, },
// 06: 4 lines of increasing red and then green
{ 0x000, 0x000, 0x001, 0x001, 0x002, 0x002, 0x003, 0x003,
0x004, 0x004, 0x005, 0x005, 0x006, 0x006, 0x007, 0x007,
0x008, 0x008, 0x009, 0x009, 0x00A, 0x00A, 0x00B, 0x00B,
0x00C, 0x00C, 0x00D, 0x00D, 0x00E, 0x00E, 0x00F, 0x00F,
0x000, 0x000, 0x010, 0x010, 0x020, 0x020, 0x030, 0x030,
0x040, 0x040, 0x050, 0x050, 0x060, 0x060, 0x070, 0x070,
0x080, 0x080, 0x090, 0x090, 0x0A0, 0x0A0, 0x0B0, 0x0B0,
0x0C0, 0x0C0, 0x0D0, 0x0D0, 0x0E0, 0x0E0, 0x0F0, 0x0F0, },
// 07: 4 lines of increasing red and then blue
{ 0x000, 0x000, 0x001, 0x001, 0x002, 0x002, 0x003, 0x003,
0x004, 0x004, 0x005, 0x005, 0x006, 0x006, 0x007, 0x007,
0x008, 0x008, 0x009, 0x009, 0x00A, 0x00A, 0x00B, 0x00B,
0x00C, 0x00C, 0x00D, 0x00D, 0x00E, 0x00E, 0x00F, 0x00F,
0x000, 0x000, 0x100, 0x100, 0x200, 0x200, 0x300, 0x300,
0x400, 0x400, 0x500, 0x500, 0x600, 0x600, 0x700, 0x700,
0x800, 0x800, 0x900, 0x900, 0xA00, 0xA00, 0xB00, 0xB00,
0xC00, 0xC00, 0xD00, 0xD00, 0xE00, 0xE00, 0xF00, 0xF00, },
// 08: criss cross of green and red with diagonal blue.
{ 0xF00, 0x001, 0x003, 0x005, 0x007, 0x00A, 0x00F, 0x000,
0x020, 0xF21, 0x023, 0x025, 0x027, 0x02A, 0x02F, 0x020,
0x040, 0x041, 0xF43, 0x045, 0x047, 0x04A, 0x04F, 0x040,
0x060, 0x061, 0x063, 0xF65, 0x067, 0x06A, 0x06F, 0x060,
0x080, 0x081, 0x083, 0x085, 0xF87, 0x08A, 0x08F, 0x080,
0x0A0, 0x0A1, 0x0A3, 0x0A5, 0x0A7, 0xFAA, 0x0AF, 0x0A0,
0x0F0, 0x0F1, 0x0F3, 0x0F5, 0x0F7, 0x0FA, 0xFFF, 0x0F0,
0x000, 0x001, 0x003, 0x005, 0x007, 0x00A, 0x00F, 0xF00, },
// 09: 2 lines of green, 2 red, 2 orange, 2 green
{ 0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0,
0x0F0, 0x0F0, 0x0FF, 0x0FF, 0x00F, 0x00F, 0x0F0, 0x0F0, },
// 10: multicolor smiley face
{ 0x000, 0x000, 0x00F, 0x00F, 0x00F, 0x00F, 0x000, 0x000,
0x000, 0x00F, 0x000, 0x000, 0x000, 0x000, 0x00F, 0x000,
0x00F, 0x000, 0xF00, 0x000, 0x000, 0xF00, 0x000, 0x00F,
0x00F, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x00F,
0x00F, 0x000, 0x0F0, 0x000, 0x000, 0x0F0, 0x000, 0x00F,
0x00F, 0x000, 0x000, 0x0F4, 0x0F3, 0x000, 0x000, 0x00F,
0x000, 0x00F, 0x000, 0x000, 0x000, 0x000, 0x00F, 0x000,
0x000, 0x000, 0x00F, 0x00F, 0x00F, 0x00F, 0x000, 0x000, },
};
// Convert a BGR 4/4/4 bitmap to RGB 5/6/5 used by Adafruit_GFX
void fixdrawRGBBitmap(int16_t x, int16_t y, const uint16_t *bitmap, int16_t w, int16_t h) {
uint16_t RGB_bmp_fixed[w * h];
for (uint16_t pixel=0; pixel<w*h; pixel++) {
uint8_t r,g,b;
uint16_t color = pgm_read_word(bitmap + pixel);
//Serial.print(color, HEX);
b = (color & 0xF00) >> 8;
g = (color & 0x0F0) >> 4;
r = color & 0x00F;
//Serial.print(" ");
//Serial.print(b);
//Serial.print("/");
//Serial.print(g);
//Serial.print("/");
//Serial.print(r);
//Serial.print(" -> ");
// expand from 4/4/4 bits per color to 5/6/5
b = map(b, 0, 15, 0, 31);
g = map(g, 0, 15, 0, 63);
r = map(r, 0, 15, 0, 31);
//Serial.print(r);
//Serial.print("/");
//Serial.print(g);
//Serial.print("/");
//Serial.print(b);
RGB_bmp_fixed[pixel] = (r << 11) + (g << 5) + b;
//Serial.print(" -> ");
//Serial.println(RGB_bmp_fixed[pixel], HEX);
}
matrix->drawRGBBitmap(x, y, RGB_bmp_fixed, w, h);
}
// In a case of a tile of neomatrices, this test is helpful to make sure that the
// pixels are all in sequence (to check your wiring order and the tile options you
// gave to the constructor).
// This also counts as another speed test that measures how fast matrix->show, is.
// 4096 pixels, 55 seconds, 74 frames per second.
// without the pixel copies, it takes 54 seconds, almost as fast.
void count_pixels() {
matrix->clear();
for (uint16_t i=0; i<mh; i++) {
for (uint16_t j=0; j<mw; j++) {
matrix->drawPixel(j, i, i%3==0?(uint16_t)LED_BLUE_HIGH:i%3==1?(uint16_t)LED_RED_HIGH:(uint16_t)LED_GREEN_HIGH);
matrix->show();
}
Serial.print("Row done: ");
Serial.println(i);
}
}
// Fill the screen with multiple levels of white to gauge the quality
void display_four_white() {
matrix->clear();
matrix->fillRect(0,0, mw,mh, LED_WHITE_HIGH);
matrix->drawRect(1,1, mw-2,mh-2, LED_WHITE_MEDIUM);
matrix->drawRect(2,2, mw-4,mh-4, LED_WHITE_LOW);
matrix->drawRect(3,3, mw-6,mh-6, LED_WHITE_VERYLOW);
matrix->show();
}
void display_bitmap(uint8_t bmp_num, uint16_t color) {
static uint16_t bmx,bmy;
// Clear the space under the bitmap that will be drawn as
// drawing a single color pixmap does not write over pixels
// that are nul, and leaves the data that was underneath
matrix->fillRect(bmx,bmy, bmx+8,bmy+8, LED_BLACK);
matrix->drawBitmap(bmx, bmy, mono_bmp[bmp_num], 8, 8, color);
bmx += 8;
if (bmx >= mw) bmx = 0;
if (!bmx) bmy += 8;
if (bmy >= mh) bmy = 0;
matrix->show();
}
void display_rgbBitmap(uint8_t bmp_num) {
static uint16_t bmx,bmy;
fixdrawRGBBitmap(bmx, bmy, RGB_bmp[bmp_num], 8, 8);
bmx += 8;
if (bmx >= mw) bmx = 0;
if (!bmx) bmy += 8;
if (bmy >= mh) bmy = 0;
matrix->show();
}
void display_lines() {
matrix->clear();
// 4 levels of crossing red lines.
matrix->drawLine(0,mh/2-2, mw-1,2, LED_RED_VERYLOW);
matrix->drawLine(0,mh/2-1, mw-1,3, LED_RED_LOW);
matrix->drawLine(0,mh/2, mw-1,mh/2, LED_RED_MEDIUM);
matrix->drawLine(0,mh/2+1, mw-1,mh/2+1, LED_RED_HIGH);
// 4 levels of crossing green lines.
matrix->drawLine(mw/2-2, 0, mw/2-2, mh-1, LED_GREEN_VERYLOW);
matrix->drawLine(mw/2-1, 0, mw/2-1, mh-1, LED_GREEN_LOW);
matrix->drawLine(mw/2+0, 0, mw/2+0, mh-1, LED_GREEN_MEDIUM);
matrix->drawLine(mw/2+1, 0, mw/2+1, mh-1, LED_GREEN_HIGH);
// Diagonal blue line.
matrix->drawLine(0,0, mw-1,mh-1, LED_BLUE_HIGH);
matrix->drawLine(0,mh-1, mw-1,0, LED_ORANGE_MEDIUM);
matrix->show();
}
void display_boxes() {
matrix->clear();
matrix->drawRect(0,0, mw,mh, LED_BLUE_HIGH);
matrix->drawRect(1,1, mw-2,mh-2, LED_GREEN_MEDIUM);
matrix->fillRect(2,2, mw-4,mh-4, LED_RED_HIGH);
matrix->fillRect(3,3, mw-6,mh-6, LED_ORANGE_MEDIUM);
matrix->show();
}
void display_circles() {
matrix->clear();
matrix->drawCircle(mw/2,mh/2, 2, LED_RED_MEDIUM);
matrix->drawCircle(mw/2-1-min(mw,mh)/8, mh/2-1-min(mw,mh)/8, min(mw,mh)/4, LED_BLUE_HIGH);
matrix->drawCircle(mw/2+1+min(mw,mh)/8, mh/2+1+min(mw,mh)/8, min(mw,mh)/4-1, LED_ORANGE_MEDIUM);
matrix->drawCircle(1,mh-2, 1, LED_GREEN_LOW);
matrix->drawCircle(mw-2,1, 1, LED_GREEN_HIGH);
if (min(mw,mh)>12) matrix->drawCircle(mw/2-1, mh/2-1, min(mh/2-1,mw/2-1), LED_CYAN_HIGH);
matrix->show();
}
void display_resolution() {
matrix->setTextSize(1);
// not wide enough;
if (mw<16) return;
matrix->clear();
// Font is 5x7, if display is too small
// 8 can only display 1 char
// 16 can almost display 3 chars
// 24 can display 4 chars
// 32 can display 5 chars
matrix->setCursor(0, 0);
matrix->setTextColor(matrix->Color(255,0,0));
if (mw>10) matrix->print(mw/10);
matrix->setTextColor(matrix->Color(255,128,0));
matrix->print(mw % 10);
matrix->setTextColor(matrix->Color(0,255,0));
matrix->print('x');
// not wide enough to print 5 chars, go to next line
if (mw<25) {
if (mh==13) matrix->setCursor(6, 7);
else if (mh>=13) {
matrix->setCursor(mw-11, 8);
} else {
// we're not tall enough either, so we wait and display
// the 2nd value on top.
matrix->show();
delay(2000);
matrix->clear();
matrix->setCursor(mw-11, 0);
}
}
matrix->setTextColor(matrix->Color(0,255,128));
matrix->print(mh/10);
matrix->setTextColor(matrix->Color(0,128,255));
matrix->print(mh % 10);
// enough room for a 2nd line
if ((mw>25 && mh >14) || mh>16) {
matrix->setCursor(0, mh-7);
matrix->setTextColor(matrix->Color(0,255,255));
if (mw>16) matrix->print('*');
matrix->setTextColor(matrix->Color(255,0,0));
matrix->print('R');
matrix->setTextColor(matrix->Color(0,255,0));
matrix->print('G');
matrix->setTextColor(matrix->Color(0,0,255));
matrix->print("B");
matrix->setTextColor(matrix->Color(255,255,0));
// this one could be displayed off screen, but we don't care :)
matrix->print("*");
// We have a big array, great, let's assume 32x32 and add something in the middle
if (mh>24 && mw>25) {
for (uint16_t i=0; i<mw; i+=8) fixdrawRGBBitmap(i, mh/2-7+(i%16)/8*6, RGB_bmp[10], 8, 8);
}
}
matrix->show();
}
void display_scrollText() {
uint8_t size = max(int(mw/8), 1);
matrix->clear();
matrix->setTextWrap(false); // we don't wrap text so it scrolls nicely
matrix->setTextSize(1);
matrix->setRotation(0);
for (int8_t x=7; x>=-42; x--) {
yield();
matrix->clear();
matrix->setCursor(x,0);
matrix->setTextColor(LED_GREEN_HIGH);
matrix->print("Hello");
if (mh>11) {
matrix->setCursor(-20-x,mh-7);
matrix->setTextColor(LED_ORANGE_HIGH);
matrix->print("World");
}
matrix->show();
delay(50);
}
matrix->setRotation(3);
matrix->setTextSize(size);
matrix->setTextColor(LED_BLUE_HIGH);
for (int16_t x=8*size; x>=-6*8*size; x--) {
yield();
matrix->clear();
matrix->setCursor(x,mw/2-size*4);
matrix->print("Rotate");
matrix->show();
// note that on a big array the refresh rate from show() will be slow enough that
// the delay become irrelevant. This is already true on a 32x32 array.
delay(50/size);
}
matrix->setRotation(0);
matrix->setCursor(0,0);
matrix->show();
}
// Scroll within big bitmap so that all if it becomes visible or bounce a small one.
// If the bitmap is bigger in one dimension and smaller in the other one, it will
// be both panned and bounced in the appropriate dimensions.
void display_panOrBounceBitmap (uint8_t bitmapSize) {
// keep integer math, deal with values 16 times too big
// start by showing upper left of big bitmap or centering if the display is big
int16_t xf = max(0, (mw-bitmapSize)/2) << 4;
int16_t yf = max(0, (mh-bitmapSize)/2) << 4;
// scroll speed in 1/16th
int16_t xfc = 6;
int16_t yfc = 3;
// scroll down and right by moving upper left corner off screen
// more up and left (which means negative numbers)
int16_t xfdir = -1;
int16_t yfdir = -1;
for (uint16_t i=1; i<200; i++) {
bool updDir = false;
// Get actual x/y by dividing by 16.
int16_t x = xf >> 4;
int16_t y = yf >> 4;
matrix->clear();
// bounce 8x8 tri color smiley face around the screen
if (bitmapSize == 8) fixdrawRGBBitmap(x, y, RGB_bmp[10], 8, 8);
// pan 24x24 pixmap
if (bitmapSize == 24) matrix->drawRGBBitmap(x, y, (const uint16_t *) bitmap24, bitmapSize, bitmapSize);
if (bitmapSize == 32) matrix->drawRGBBitmap(x, y, (const uint16_t *) bitmap32, bitmapSize, bitmapSize);
matrix->show();
// Only pan if the display size is smaller than the pixmap
// but not if the difference is too small or it'll look bad.
if (bitmapSize-mw>2) {
xf += xfc*xfdir;
if (xf >= 0) { xfdir = -1; updDir = true ; };
// we don't go negative past right corner, go back positive
if (xf <= ((mw-bitmapSize) << 4)) { xfdir = 1; updDir = true ; };
}
if (bitmapSize-mh>2) {
yf += yfc*yfdir;
// we shouldn't display past left corner, reverse direction.
if (yf >= 0) { yfdir = -1; updDir = true ; };
if (yf <= ((mh-bitmapSize) << 4)) { yfdir = 1; updDir = true ; };
}
// only bounce a pixmap if it's smaller than the display size
if (mw>bitmapSize) {
xf += xfc*xfdir;
// Deal with bouncing off the 'walls'
if (xf >= (mw-bitmapSize) << 4) { xfdir = -1; updDir = true ; };
if (xf <= 0) { xfdir = 1; updDir = true ; };
}
if (mh>bitmapSize) {
yf += yfc*yfdir;
if (yf >= (mh-bitmapSize) << 4) { yfdir = -1; updDir = true ; };
if (yf <= 0) { yfdir = 1; updDir = true ; };
}
if (updDir) {
// Add -1, 0 or 1 but bind result to 1 to 1.
// Let's take 3 is a minimum speed, otherwise it's too slow.
xfc = constrain(xfc + random(-1, 2), 3, 16);
yfc = constrain(xfc + random(-1, 2), 3, 16);
}
delay(10);
}
}
void loop() {
// clear the screen after X bitmaps have been displayed and we
// loop back to the top left corner
// 8x8 => 1, 16x8 => 2, 17x9 => 6
static uint8_t pixmap_count = ((mw+7)/8) * ((mh+7)/8);
display_four_white();
delay(3000);
Serial.print("Screen pixmap capacity: ");
Serial.println(pixmap_count);
// multicolor bitmap sent as many times as we can display an 8x8 pixmap
for (uint8_t i=0; i<=pixmap_count; i++)
{
display_rgbBitmap(0);
}
delay(1000);
Serial.println("Display Resolution");
display_resolution();
delay(3000);
Serial.println("Display bitmaps");
// Cycle through red, green, blue, display 2 checkered patterns
// useful to debug some screen types and alignment.
uint16_t bmpcolor[] = { LED_GREEN_HIGH, LED_BLUE_HIGH, LED_RED_HIGH };
for (uint8_t i=0; i<3; i++)
{
display_bitmap(0, bmpcolor[i]);
delay(500);
display_bitmap(1, bmpcolor[i]);
delay(500);
}
Serial.println("Display smileys");
// Display 3 smiley faces.
for (uint8_t i=2; i<=4; i++)
{
display_bitmap(i, bmpcolor[i-2]);
// If more than one pixmap displayed per screen, display more quickly.
delay(mw>8?500:1500);
}
// If we have multiple pixmaps displayed at once, wait a bit longer on the last.
delay(mw>8?1000:500);
Serial.println("Display lines, boxes and circles");
display_lines();
delay(3000);
display_boxes();
delay(3000);
display_circles();
delay(3000);
matrix->clear();
Serial.println("Display RGB bitmaps");
for (uint8_t i=0; i<=(sizeof(RGB_bmp)/sizeof(RGB_bmp[0])-1); i++)
{
display_rgbBitmap(i);
delay(mw>8?500:1500);
}
// If we have multiple pixmaps displayed at once, wait a bit longer on the last.
delay(mw>8?1000:500);
Serial.println("Scrolltext");
display_scrollText();
Serial.println("bounce 32 bitmap");
display_panOrBounceBitmap(32);
// pan a big pixmap
Serial.println("pan/bounce 24 bitmap");
display_panOrBounceBitmap(24);
// bounce around a small one
Serial.println("pan/bounce 8 bitmap");
display_panOrBounceBitmap(8);
Serial.println("Demo loop done, starting over");
}
void setup() {
Serial.begin(115200);
matrixLayer.addLayer(&backgroundLayer);
matrixLayer.begin();
matrixLayer.setBrightness(defaultBrightness);
// This sets the neomatrix and LEDMatrix pointers
show_callback();
matrixLayer.setRefreshRate(240);
backgroundLayer.enableColorCorrection(true);
// Time for serial port to work?
delay(1000);
backgroundLayer.fillScreen( {0x80, 0x80, 0x80} );
backgroundLayer.swapBuffers();
Serial.print("Matrix Size: ");
Serial.print(mw);
Serial.print(" ");
Serial.println(mh);
matrix->begin();
matrix->setTextWrap(false);
Serial.println("If the code crashes here, decrease the brightness or turn off the all white display below");
// Test full bright of all LEDs. If brightness is too high
// for your current limit (i.e. USB), decrease it.
//#define DISABLE_WHITE
#ifndef DISABLE_WHITE
matrix->fillScreen(LED_WHITE_HIGH);
matrix->show();
delay(3000);
matrix->clear();
#endif
#if 0
Serial.println("Running blue/red speed test");
// You can't use millis to time frame fresh rate because it uses cli() which breaks millis()
// So I use my stopwatch to count 1000 displays and that's good enough
// 500 loops of 2 updates each is 13.3s for 1000 updates or 75 updates per second for 4096 LEDs
// for ESP32
// For some reason it's much faster on teensy 3.6, 18 seconds or 228fps
for (uint16_t i=0; i<500; i++) {
matrix->fillScreen(LED_BLUE_HIGH);
matrix->show();
matrix->fillScreen(LED_RED_HIGH);
matrix->show();
}
Serial.println("Done running blue/red speed test");
// This counts but also shows bleeding between pixels and lines.
Serial.println("Count pixels. This is slow, you may want to comment me out");
count_pixels();
Serial.println("Count pixels done");
delay(1000);
#endif
}
// vim:sts=4:sw=4