-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathiw_main_backup.py
789 lines (511 loc) · 29.2 KB
/
iw_main_backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
import requests
import urllib
import os
import compare
import decimal
from decimal import Decimal
import cv2
import time
import numpy
import array
import MySQLdb
from MySQLdb import cursors
import sys
import pymongo
import json
from json import loads
import simplejson
from bson.objectid import ObjectId
from bson import json_util
from bson.json_util import dumps
from multiprocessing import Pool
from multiprocessing import Process
import multiprocessing
from downloader import Downloader
from image_processor import Image_Processor
class DecimalEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, Decimal):
return "%.2f" % obj
return json.JSONEncoder.default(self, obj)
class IW_Main(object):
# def download_photos(self):
# print 'get_properties_from_iw_api'
# IMOVELWEB_API_QUERY_URL = "http://apim01.imovelweb.com.br/interface/buscador/buscarmin"
# headers = {
# 'username': "adonde",
# 'password': "v1v1radonde",
# 'User-Agent': "API_RELA",
# 'uuid': "4788865e3938759052311306ca032077"
# }
# page = 1
# total_photos_from_neighborhood = 0
# total_size_downloaded_from_neighborhood = 0
# while (True):
# print "\n************ PAGINA: %s" % (str(page))
# total_photos_in_page = 0
# total_size_downloaded_in_page = 0
# url_params = {
# 'idciudad': 109668, #Sao Paulo
# 'idzona': 526281, #Morumbi
# 'pagina': page, }
# request_response = requests.get(IMOVELWEB_API_QUERY_URL, params=url_params, headers=headers)
# json_response = request_response.json()
# ads_count = json_response['data']['total']
# ads = json_response['data']['avisos']
# for ad in ads:
# number_of_photos_from_ad = 0
# total_size_downloaded_from_ad = 0
# for attribute, value in ad.iteritems():
# if attribute=='fotos':
# for photo in value:
# photo_url = photo.get('url').replace("580x465", "100x75"); # getting smaller images
# local_dir_saved_photo = "photos_avisos/" + str(ad.get('idpropiedad'))
# local_path_to_save_photo = local_dir_saved_photo + "/" + photo_url.rpartition('/')[2]
# if not os.path.exists(local_dir_saved_photo):
# os.mkdir(local_dir_saved_photo) #creating aviso directory to save photo
# urllib.urlretrieve(photo_url, local_path_to_save_photo) #Downloading photo
# size = format(bytesto(os.path.getsize(local_path_to_save_photo), 'm'),'.4f') #size in megabytes of each photo
# number_of_photos_from_ad += 1
# total_size_downloaded_from_ad = total_size_downloaded_from_ad + float(size)
# print "[#AD] Photos from: %s: %s | Tamanho:%s\n" % (ad.get('idpropiedad'),str(number_of_photos_from_ad),str(total_size_downloaded_from_ad))
# total_photos_in_page = total_photos_in_page + number_of_photos_from_ad
# total_size_downloaded_in_page = total_size_downloaded_in_page + total_size_downloaded_from_ad
# print "[#PAGE] Photos from page %s: %s | Tamanho:%s\n" % (page,str(total_photos_in_page),str(total_size_downloaded_in_page))
# total_photos_from_neighborhood = total_photos_from_neighborhood + total_photos_in_page
# total_size_downloaded_from_neighborhood = total_size_downloaded_from_neighborhood + total_size_downloaded_in_page
# if len(ads)<18:
# break
# page += 1
# print "[#TOTAL] Photos from all pages: %s | Tamanho:%s\n" % (str(total_photos_from_neighborhood),str(total_size_downloaded_from_neighborhood))
# def set_images_histogram(self):
# number_of_subdirectories = 0
# number_of_files = 0
# data_json = []
# for dir_name, dir_names, file_names in os.walk('photos_avisos'):
# number_of_subdirectories += 1
# for subdir_name in dir_names:
# aviso_json = {"id": number_of_subdirectories, "id_aviso":subdir_name, "photos":[]}
# number_of_subdirectories += 1
# for dir_name_, dir_names_, file_names_ in os.walk(os.path.join(dir_name, subdir_name)):
# for file_name_ in file_names_:
# try:
# hist = compare.get_histogram(os.path.join(dir_name, subdir_name, file_name_))
# hist_json = {"photo_path":subdir_name + "/" + file_name_, "histogram":json.dumps(hist.tolist())}
# aviso_json["photos"].append(hist_json)
# except:
# pass
# number_of_files += 1
# if number_of_files%1000==0:
# print number_of_files
# con_mongo.ads_histograms.insert(aviso_json)
# def iterate_folders_directory(self):
# start = time.time()
# number_of_avisos = 0
# #getting all avisos from mongo db
# all_avisos = con_mongo.ads_histograms.find()
# for aviso in all_avisos:
# number_of_avisos += 1
# aviso_has_similar_photos = False
# #json that will save the entire aviso data that has duplicated photos
# aviso_json = {"id_aviso": aviso.get("id_aviso"), "photos":[]}
# photos = aviso.get("photos")
# for photo in photos:
# is_photo_similar = False
# #finding photos with the same histogram
# equals_avisos = con_mongo.ads_histograms.find({"photos.histogram":photo.get("histogram")})
# #json that saves the data of the main photo that is being compared
# main_photo_json = {"main_photo": photo.get("photo_path"), "similar_photos":[]}
# #iterate in all avisos that have some photo with the same histogram
# for aviso_to_compare in equals_avisos:
# #getting all photos of the aviso that is being compared
# photos_compare = aviso_to_compare.get("photos")
# #iterating in all photos to verify which one has the same histogram
# for photo_compare in photos_compare:
# #verifying if the photo has the same histogram, excluding photos of the same aviso
# if aviso_to_compare.get("id_aviso")!=aviso.get("id_aviso") and photo.get("photo_path")!=photo_compare.get("photo_path") and photo.get("histogram")==photo_compare.get("histogram"):
# #json that saves the data of the similar photo that will be saved in similar_photos[] of main_photo_json
# similar_photo_json = {"similar_id_aviso":aviso_to_compare.get("id_aviso"), "similar_photo":photo_compare.get("photo_path")}
# main_photo_json["similar_photos"].append(similar_photo_json)
# aviso_has_similar_photos = True
# is_photo_similar = True
# #saves main_photo_json if exists a photo inside the aviso that is equal to the main photo
# if is_photo_similar:
# aviso_json["photos"].append(main_photo_json);
# now = time.time()
# if number_of_avisos%10==0:
# print str(number_of_avisos) + " - " + str(now-start)
# #saves in mongo the aviso json if there is any photo that has others equal photos
# if aviso_has_similar_photos:
# con_mongo.ads_similar.insert(aviso_json)
# ATTENTION THIS METHOD WAS COMPLETE REMOVED AND ADDED INSIDE find_similar_photos_in_other_ads
# def update_number_of_ads_similar_collection(self):
# all_similar_avisos = con_mongo.ads_similar.find()
# number_of_similar_ads_updated = 0
# number_of_ads = 0
# for similar_aviso in all_similar_avisos:
# id_similar_aviso = similar_aviso.get("id_aviso")
# aviso_in_histograms_array = con_mongo.ads_histograms.find({"id_aviso":id_similar_aviso})
# aviso_in_histograms_array = loads(dumps(aviso_in_histograms_array))
# for aviso_hist in aviso_in_histograms_array:
# #getting all photos of the aviso that is being compared
# number_of_ads = len(aviso_hist.get("photos"))
# con_mongo.ads_similar.update({"id_aviso" :id_similar_aviso},{'$set' : {"number_of_ads":number_of_ads}})
# break
# number_of_similar_ads_updated += 1
# print number_of_similar_ads_updated
# def create_similiar_avisos_collection(self):
# start = time.time()
# all_similar_avisos = con_mongo.ads_similar.find()
# images_not_valid = ["image-soon-po.png","sin-logo.png"]
# number_of_similar_aviso_analyzed = 0
# #iterating for avisos that have some image duplicated
# for similar_aviso in all_similar_avisos:
# photos = similar_aviso.get("photos")
# unique_similar_avisos = []
# aviso_json = {"id_aviso":similar_aviso.get("id_aviso"),"equal_avisos":[]}
# for photo in photos:
# #getting all similar photos
# similar_photos = photo.get("similar_photos")
# for similar_photo in similar_photos:
# invalid_images = False;
# #verifying if image is not one of the invalid images strings
# for image_to_delete in images_not_valid:
# if image_to_delete in similar_photo.get("similar_photo"):
# invalid_images = True
# break
# #getting the id of the aviso that has a image equal to the one being analized
# similar_id_aviso = similar_photo.get("similar_id_aviso")
# if not invalid_images:
# similar_aviso_already_on_array = False
# #iterating all unique similar_avisos
# for index, unique_similar_aviso in enumerate(unique_similar_avisos, start=0):
# #if similar_id_aviso already exists in json
# if unique_similar_aviso.get("id_aviso")==similar_id_aviso:
# similar_aviso_already_on_array = True
# unique_similar_avisos[index]['num_photos_equal'] += 1
# number_total_photos = unique_similar_avisos[index]["num_photos_total"]
# percentage_of_similar = self.percentage(unique_similar_avisos[index]['num_photos_equal'],number_total_photos)
# unique_similar_avisos[index]['percentage_similar_self_parent'] = int(percentage_of_similar)
# #did not find any similar id_aviso or the array is empty
# if not similar_aviso_already_on_array:
# similar_aviso_support = con_mongo.ads_similar.find({"id_aviso":similar_id_aviso})
# similar_aviso_support = loads(dumps(similar_aviso_support))
# number_of_ads_similar = similar_aviso_support[0].get("number_of_ads")
# percentage_of_similar = self.percentage(1,number_of_ads_similar)
# similar_aviso_json = {"id_aviso":similar_id_aviso,
# "num_photos_equal":1,
# "num_photos_total": number_of_ads_similar,
# "percentage_similar_self_parent": int(percentage_of_similar)
# }
# unique_similar_avisos.append(similar_aviso_json)
# only_equal_avisos = []
# for unique_similar_aviso in unique_similar_avisos:
# if unique_similar_aviso['percentage_similar_self_parent']>85:
# aviso_json["equal_avisos"].append(unique_similar_aviso)
# if len(aviso_json["equal_avisos"]) > 0:
# con_mongo.ads_equals.insert(aviso_json)
# number_of_similar_aviso_analyzed += 1
# if number_of_similar_aviso_analyzed%100==0:
# now = time.time()
# print str(number_of_similar_aviso_analyzed) + " - " + str(now-start)
# def create_tuples(self):
# start = time.time()
# all_duplicated_avisos = con_mongo.ads_equals.find()
# number_avisos = 0
# only_equals = []
# #getting all avisos that are duplicated
# for aviso in all_duplicated_avisos:
# aviso_id = aviso.get("id_aviso")
# equal_avisos_ids = aviso.get("raw_equal_avisos")
# #getting all equal_avisos that are equal to aviso
# for equal_aviso_id in equal_avisos_ids:
# if equal_aviso_id!=aviso_id:
# # print equal_aviso_id
# #looking for the equal_aviso in all ads_equals collection
# equal_aviso_object = con_mongo.ads_equals.find({"id_aviso":equal_aviso_id})
# equal_aviso_object = loads(dumps(equal_aviso_object))
# if len(equal_aviso_object)>0:
# #getting all avisos that is similar to equal_aviso
# equal_aviso_object_equals_ids = equal_aviso_object[0]['raw_equal_avisos']
# for equal_aviso_object_equal_id in equal_aviso_object_equals_ids:
# #checking if aviso_id is also in raw_equals of the equal_aviso
# #this guarantee that the both sides of comparasion exists, so de aviso is equal
# if equal_aviso_object_equal_id == aviso_id:
# tuple_to_add = [aviso_id, equal_aviso_id]
# has_equal = False
# #iterating in array to see if the tuple was already added
# for only_equals_tuples in only_equals:
# #if the tupled is already on array
# if set(tuple_to_add) == set(only_equals_tuples):
# has_equal=True
# break
# if not has_equal:
# con_mongo.ads_all_tuples.insert({'avisos_tuple': tuple_to_add})
# only_equals.append(tuple_to_add)
# number_avisos += 1
# print number_avisos
def delete_double_touples(self):
start = time.time()
all_tuples = con_mongo.ads_all_tuples.find()
number_avisos = 0
all_already_compared = []
#getting all avisos that are duplicated
for single_tuple in all_tuples:
tuples = single_tuple.get("avisos_tuple")
only_equals = {"id_aviso":tuples[0],"all_equals":[]}
all_tuples_compare = con_mongo.ads_all_tuples.find({"avisos_tuple":tuples[0]})
if not tuples[0] in all_already_compared:
for tuple_compare in all_tuples_compare:
tuples_compare = tuple_compare.get("avisos_tuple")
if tuples[0] == tuples_compare[0]:
only_equals["all_equals"].append(tuples_compare[1])
else:
only_equals["all_equals"].append(tuples_compare[0])
number_avisos+=1
all_already_compared.append(tuples[0])
con_mongo.ads_all_similar.insert(only_equals)
print only_equals
print number_avisos
def clean_group_final_repeated(self):
all_avisos = con_mongo.ads_all_similar.find()
number_avisos = 0
number_avisos_removed = 0
for aviso in all_avisos:
id_aviso = aviso.get("id_aviso")
if con_mongo.ads_all_similar.find({"id_aviso":id_aviso}).count()>0:
equal_avisos = aviso.get("all_equals")
for equal_aviso in equal_avisos:
if con_mongo.ads_all_similar.find({"id_aviso":equal_aviso}).count()>0:
con_mongo.ads_all_similar.remove({ 'id_aviso': equal_aviso}, True)
number_avisos_removed += 1
number_avisos += 1
print "Removed: " + str(number_avisos_removed)
print number_avisos
def clean_group_final_repeated_group(self):
all_avisos = con_mongo.ads_all_similar.find()
number_avisos = 0
number_avisos_removed = 0
for aviso in all_avisos:
id_aviso = aviso.get("id_aviso")
all_equals_aviso = aviso.get("all_equals")
for equal_aviso in all_equals_aviso:
number_similar_ads = con_mongo.ads_all_similar.find({"all_equals":equal_aviso, "id_aviso": { "$ne": id_aviso}}).count()
if number_similar_ads>0:
equals = con_mongo.ads_all_similar.find({"all_equals":equal_aviso, "id_aviso": { '$ne': id_aviso}})
for equal in equals:
id_aviso_equal = equal.get("id_aviso")
if not id_aviso_equal in all_equals_aviso:
con_mongo.ads_all_similar.update({"id_aviso":id_aviso},{ '$push': {'all_equals': id_aviso_equal}})
con_mongo.ads_all_similar.remove({'id_aviso':id_aviso_equal}, True)
number_avisos_removed += 1
number_avisos +=1
print number_avisos
print number_avisos_removed
def add_array_all_equals(self):
all_avisos = con_mongo.ads_all_similar.find()
number_avisos = 0
number_avisos_removed = 0
for aviso in all_avisos:
id_aviso = aviso.get("id_aviso")
con_mongo.ads_all_similar.update({"id_aviso":id_aviso},{ '$push': {'all_equals': id_aviso}})
def verify_similarity_both_sides(self):
start = time.time()
all_duplicated_avisos = con_mongo.ads_equals_tuples.find()
print "NUMBER: " + str(con_mongo.ads_equals_tuples.find().count())
number_avisos = 0
number_avisos_equal = 0
only_equals = []
for aviso in all_duplicated_avisos:
aviso_a = aviso.get("id_aviso_a")
aviso_b = aviso.get("id_aviso_b")
has_equal = False
all_duplicated_avisos_support = con_mongo.ads_equals_tuples.find()
for aviso_support in all_duplicated_avisos_support:
aviso_a_support = aviso_support.get("id_aviso_a")
aviso_b_support = aviso_support.get("id_aviso_b")
if(aviso_a==aviso_b_support):
has_equal = True
tuple_to_add = [aviso_a, aviso_b]
# con_mongo.ads_only_equals.insert({'avisos_tuple': tuple_to_add})
#only_equals loads(dumps(only_equals))
if number_avisos>0:
for only_equals_tuples in only_equals:
# print only_equals_tuples.get("avisos_tuple")
# print str(only_equals_tuples) + " _ " + str(tuple_to_add)
if set(tuple_to_add) != set(only_equals_tuples):
has_equal=True
number_avisos_equal+=1
con_mongo.ads_only_equals.insert({'avisos_tuple': tuple_to_add})
break
else:
has_equal=True
con_mongo.ads_only_equals.insert({'avisos_tuple': tuple_to_add})
only_equals.append(tuple_to_add)
if has_equal:
break
# con_mongo.ads_equals_tuples.remove({ 'id_aviso_a': aviso_a_support ,'id_aviso_b':aviso_b_support}, True)
# if not has_equal:
# con_mongo.ads_equals_tuples.remove({ 'id_aviso_a': aviso_a ,'id_aviso_b':aviso_b}, True)
number_avisos+=1
print "Equal: " + str(number_avisos_equal)
print "Total:" + str(number_avisos)
# def create_raw_equal_avisos(self):
# start = time.time()
# all_duplicated_avisos = con_mongo.ads_equals.find()
# for duplicated_aviso in all_duplicated_avisos:
# raw_equal_avisos = []
# raw_equal_avisos.append(duplicated_aviso.get("id_aviso"))
# # set(x) == set(y)
# equal_avisos = duplicated_aviso.get("equal_avisos")
# for equal_aviso in equal_avisos:
# raw_equal_avisos.append(equal_aviso.get("id_aviso"))
# con_mongo.ads_equals.update({"id_aviso" :duplicated_aviso.get("id_aviso")},{'$set' : {"raw_equal_avisos":raw_equal_avisos}})
# def group_duplicateds(self):
# all_duplicated_avisos = con_mongo.ads_equals.find()
# all_equals_json = []
# all_avisos = 0
# for duplicated_aviso in all_duplicated_avisos:
# aviso_already_analized = False
# some_equal = False
# number_of_grouped = 0;
# #json that saves the raw_equal_avisos and the avisos[] that have this respective raw
# grouped_equal_avisos = {"avisos":[],"raw_equal_avisos":duplicated_aviso.get("raw_equal_avisos")}
# #adding the aviso that is being analized aviso to avisos[] array
# # grouped_equal_avisos["avisos"].append(duplicated_aviso.get("id_aviso"))
# for compared_aviso in all_equals_json:
# group_avisos_duplicated = compared_aviso.get("avisos")
# for aviso_duplicated in group_avisos_duplicated:
# if duplicated_aviso.get("id_aviso") == aviso_duplicated:
# aviso_already_analized = True
# # print "aviso_already_analized = TRUE"
# if not aviso_already_analized:
# all_duplicated_avisos_compare = con_mongo.ads_equals.find()
# #iterating in other avisos to see if there is a raw avisos equal to group them
# for duplicated_aviso_compare in all_duplicated_avisos_compare:
# #checking if they have the same raw
# if set(duplicated_aviso_compare.get("raw_equal_avisos")) == set(duplicated_aviso.get("raw_equal_avisos")):
# some_equal = True
# ## if they are different ads add to avisos[] array of avisos with the same raw
# #if duplicated_aviso.get("id_aviso") != duplicated_aviso_compare.get("id_aviso"):
# grouped_equal_avisos["avisos"].append(duplicated_aviso_compare.get("id_aviso"))
# all_avisos += 1
# if some_equal:
# all_equals_json.append(grouped_equal_avisos)
# print all_equals_json
# # number_of_grouped += 1
# print all_avisos
# con_mongo.ads_equals_grouped.insert(grouped_equal_avisos)
#only to clean array
def elimate_repeated_all_similar(self):
all_avisos = con_mongo.ads_all_similar.find()
number_avisos = 0
number_avisos_removed = 0
for index, aviso in enumerate(all_avisos, start=0):
# for aviso in all_avisos:
id_aviso = aviso.get("id_aviso")
all_equals = aviso.get("all_equals")
if all_equals!=None:
con_mongo.ads_all_similar.update({"id_aviso" :id_aviso},{'$set' : {"all_equals":sorted(set(all_equals))}})
else:
con_mongo.ads_all_similar.remove({ 'id_aviso': id_aviso}, True)
# print )
# if con_mongo.ads_all_similar.find({"id_aviso":id_aviso}).count()>0:
# equal_avisos = aviso.get("all_equals")
# for equal_aviso in equal_avisos:
# if con_mongo.ads_all_similar.find({"id_aviso":equal_aviso}).count()>0:
# con_mongo.ads_all_similar.remove({ 'id_aviso': equal_aviso}, True)
# number_avisos_removed += 1
# number_avisos += 1
# print "Removed: " + str(number_avisos_removed)
# print number_avisos
########### BEGIN:UTILS
def percentage(self, percent, whole):
return (percent * 100.0) / whole
def bytesto(bytes, to, bsize=1024):
"""convert bytes to megabytes, etc.
sample code:
print('mb= ' + str(bytesto(314575262000000, 'm')))
sample output:
mb= 300002347.946
"""
a = {'k' : 1, 'm': 2, 'g' : 3, 't' : 4, 'p' : 5, 'e' : 6 }
r = float(bytes)
for i in range(a[to]):
r = r / bsize
return(r)
def __print_inline(self, string):
sys.stdout.write(string)
sys.stdout.flush()
########### END:UTILS
############DB##############
def __db_mysql(self):
self.__print_inline("\n[db] conectando com o MySQL... \n")
conn = MySQLdb.connect(host="192.168.22.78", db='navplat_realestate_imovelweb', user="imovelro", passwd="1m0v3lr0", charset='utf8', use_unicode=True) # US-RDS
print "oK!"
return conn
def open_cursor(self):
global con_mysql
return con_mysql.cursor(cursors.SSDictCursor)
def __db_mongo(self):
self.__print_inline("\n[db] conectando com o MongoDB... \n")
# connection = pymongo.Connection('ds063038-a1.mongolab.com', 63038)
# db = connection['urbanizo']
# db.authenticate('mestre', 'xirinxirion')
connection = pymongo.Connection('localhost')
db = connection['deduplication']
print "oK mongo!"
return db
def setup_db(self):
# global query_limits
# query_limits = 0
# global con_mysql
# con_mysql = self.__db_mysql()
global con_mongo
con_mongo = self.__db_mongo()
print("Done!")
############FIM DB##############
def get_polygons(self):
return con_mongo.place.find({'hierarchy': ObjectId("52d044555847c13b8587f338"), 'hierarchy_size':6})
def info(self, title):
print title
print 'module name:', __name__
if hasattr(os, 'getppid'): # only available on Unix
print 'parent process:', os.getppid()
print 'process id:', os.getpid()
def f(self, name):
self.info('function f')
print 'hello', name
def start_processes(self):
self.info('main line')
p = Process(target=self.f, args=(['bob','clark'],))
p.start()
p.join()
def f(self, x):
return x*x
def worker(num):
"""thread worker function"""
print 'Worker:', num
return
def run(self):
# self.setup_db()
# self.iterate_folders_directory()
# self.update_number_of_ads_similar_collection()
# self.create_similiar_avisos_collection()
# self.group_duplicateds()
# self.create_tuples()
# self.verify_similarity_both_sides()
# self.delete_double_touples()
# self.clean_group_final_repeated()
# self.clean_group_final_repeated_group()
# self.add_array_all_equals()
# self.elimate_repeated_all_similar();
# Downloader().download_photos();
# self.con_mongo = self.__db_mongo()
# Image_Processor().create_images_histogram_collection();
# Image_Processor().create_similar_photos_collection()
# Image_Processor().create_equals_avisos_collection()
# Image_Processor().create_raw_equal_avisos()
Image_Processor().create_duplicateds_group_collection()
if __name__ == '__main__':
IW_Main().run()