NOTE: The yaml file is not required.
- Convert model
- Compile the lib
- Edit the config_infer_primary_yolonas file
- Edit the deepstream_app_config file
- Testing the model
git clone https://github.com/Deci-AI/super-gradients.git
cd super-gradients
pip3 install -r requirements.txt
python3 setup.py install
pip3 install onnx onnxslim onnxruntime
NOTE: It is recommended to use Python virtualenv.
Copy the export_yolonas.py
file from DeepStream-Yolo/utils
directory to the super-gradients
folder.
Download the pth
file from YOLO-NAS releases (example for YOLO-NAS S)
wget https://sghub.deci.ai/models/yolo_nas_s_coco.pth
NOTE: You can use your custom model.
Generate the ONNX model file (example for YOLO-NAS S)
python3 export_yolonas.py -m yolo_nas_s -w yolo_nas_s_coco.pth --dynamic
NOTE: Model names
-m yolo_nas_s
or
-m yolo_nas_m
or
-m yolo_nas_l
NOTE: Number of classes (example for 80 classes)
-n 80
or
--classes 80
NOTE: To change the inference size (defaut: 640)
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
Example for 1280
-s 1280
or
-s 1280 1280
NOTE: To simplify the ONNX model (DeepStream >= 6.0)
--simplify
NOTE: To use dynamic batch-size (DeepStream >= 6.1)
--dynamic
NOTE: To use static batch-size (example for batch-size = 4)
--batch 4
NOTE: If you are using the DeepStream 5.1, remove the --dynamic
arg and use opset 12 or lower. The default opset is 14.
--opset 12
Copy the generated ONNX model file to the DeepStream-Yolo
folder.
-
Open the
DeepStream-Yolo
folder and compile the lib -
Set the
CUDA_VER
according to your DeepStream version
export CUDA_VER=XY.Z
-
x86 platform
DeepStream 7.1 = 12.6 DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 = 12.1 DeepStream 6.2 = 11.8 DeepStream 6.1.1 = 11.7 DeepStream 6.1 = 11.6 DeepStream 6.0.1 / 6.0 = 11.4 DeepStream 5.1 = 11.1
-
Jetson platform
DeepStream 7.1 = 12.6 DeepStream 7.0 / 6.4 = 12.2 DeepStream 6.3 / 6.2 / 6.1.1 / 6.1 = 11.4 DeepStream 6.0.1 / 6.0 / 5.1 = 10.2
- Make the lib
make -C nvdsinfer_custom_impl_Yolo clean && make -C nvdsinfer_custom_impl_Yolo
Edit the config_infer_primary_yolonas.txt
file according to your model (example for YOLO-NAS S with 80 classes)
[property]
...
onnx-file=yolo_nas_s_coco.pth.onnx
...
num-detected-classes=80
...
parse-bbox-func-name=NvDsInferParseYolo
...
NOTE: If you are using a custom model, you should edit the config_infer_primary_yolonas_custom.txt
file.
NOTE: The YOLO-NAS resizes the input with left/top padding. To get better accuracy, use
[property]
...
maintain-aspect-ratio=1
symmetric-padding=0
...
NOTE: The pre-trained YOLO-NAS uses zero mean normalization on the image preprocess. It is important to change the net-scale-factor
according to the trained values.
[property]
...
net-scale-factor=0.0039215697906911373
...
NOTE: The custom YOLO-NAS uses no normalization on the image preprocess. It is important to change the net-scale-factor
according to the trained values.
[property]
...
net-scale-factor=1
...
...
[primary-gie]
...
config-file=config_infer_primary_yolonas.txt
deepstream-app -c deepstream_app_config.txt
NOTE: The TensorRT engine file may take a very long time to generate (sometimes more than 10 minutes).
NOTE: For more information about custom models configuration (batch-size
, network-mode
, etc), please check the docs/customModels.md
file.