-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvac_helpers.py
493 lines (450 loc) · 15.1 KB
/
vac_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
"""
Some helper functions and classes for vac.py.
"""
import cadquery as cq
import math
# ##########################################################################
# figuring out orientation for directly created surfaces
# even though I think OCC doesn't care about face orientation, I get so many
# kernel errors this can't do anything but help.
# ##########################################################################
# circ1 = cq.Edge.makeCircle(10, angle1=0, angle2=45)
# show_object(circ1)
# print(circ1.startPoint())
# print(circ1.endPoint())
# so angle1=0 places the startpoint on the x axis
# angle1=45 places the endpoint in the +x and +y quadrant
# this should be the orientation of the top circle
# the kidney shaped vacuum port should be flipped compared to this
# then I think the ruled surface between the two will take care of itself.
# some classes to simplify this kidney/circle shape relationship, since doing
# this functionally is doing my head in
class Vector(cq.Vector):
def XY(self):
return (self.x, self.y)
class Arc(cq.Edge):
"""
All the edges in the kidney shape and circular shape are made of arcs. This
class represents an arc.
"""
def __init__(
self,
startpoint=None,
endpoint=None,
radius=None):
"""
Creates an arc between startpoint and endpoint.
Code is a bit lazy, but whatever, it works.
"""
if not isinstance(startpoint, Vector):
startpoint = Vector(startpoint)
if not isinstance(endpoint, Vector):
endpoint = Vector(startpoint)
edge = (
cq
.Workplane()
.moveTo(*startpoint.XY())
.radiusArc(endpoint.XY(), radius)
.val()
)
super().__init__(edge.wrapped)
# wasn't aware of cq's startPoint method when originally writing this
self.startpoint = startpoint
self.endpoint = endpoint
class Wire(cq.Wire):
"""
Use Wire.assembleEdges(list_of_edges) to init.
"""
@classmethod
def assembleEdges(cls, list_of_edges):
# keep track of the edges
# should have just used the method Wire.Edges(), but this now works so
# I'm not going to touch it again.
out = super().assembleEdges(list_of_edges)
out.list_of_edges = list_of_edges
return out
def proportions(self):
"""
Calculates the proportion along this wire that the intermediate points
are.
Returns a list of floats between 0 and 1.
"""
out = []
cumulative_length = 0.0
for edge in self.Edges()[:-1]:
# Am I sure these edges are sequential?
cumulative_length += edge.Length()
out.append(edge.Length() / self.Length())
return out
class UpperWire:
"""
Builds a wire to represent the upper circular edge of the ruled surface.
"""
circle_dir = Vector(0, 0, 1)
sense = True
def __init__(self, centre, radius):
if not isinstance(centre, Vector):
centre = Vector(centre)
self.centre = centre
self.radius = radius
# the signed value used for Workplane.radiusArc
self.radiusArc_radius = radius
self.fixed_points = [None] * 4
self.intermediate_points = []
for idx in range(4):
self.intermediate_points.append([])
def calc_radius(self, point):
return (point - self.centre).Length
def wire(self):
"""
Returns the cq.Wire.
"""
points = self.points()
points.append(points[0])
out = (
cq
.Workplane('XY', origin=Vector(0, 0, self.centre.z))
.moveTo(points[0].x, points[0].y)
)
for point in points[1:]:
out = out.radiusArc((point.x, point.y), self.radiusArc_radius)
out = out.wire().val()
return out
def edge_idx(self, idx: int):
"""
Generates one of the four fixed wires, not including intermediate
points.
idx is an integer between 0 and 3 inclusive.
"""
start = self.fixed_points[idx]
end = self.fixed_points[(idx + 1) % 4]
out = (
cq
.Workplane('XY', origin=Vector(0, 0, self.centre.z))
.moveTo(start.x, start.y)
.radiusArc((end.x, end.y), self.radiusArc_radius)
.val()
)
assert abs((out.startPoint() - self.fixed_points[idx]).Length) < 1e-4
assert abs((out.endPoint() - self.fixed_points[(idx + 1) % 4]).Length) < 1e-4
return out
def points(self):
"""
Returns a list of the points for the final wire.
"""
self.check_fixed_points()
out = []
for idx in range(4):
out.append(self.fixed_points[idx])
if self.intermediate_points[idx]:
out.extend(self.intermediate_points[idx])
return out
def add_fixed_point(self, idx, point):
"""
Adds one of the 4 fixed points.
"""
# this point should be on the same z plane as centre
if abs(point.z - self.centre.z) > 1e-4:
point = Vector(point.x, point.y, self.centre.z)
self.check_radius(point)
self.fixed_points[idx] = point
def check_radius(self, point):
"""
Check that point has the correct radius
"""
vector_centre_to_point = point - self.centre
if abs(vector_centre_to_point.Length - self.radius) > 1e-4 * self.radius:
raise ValueError(
f"Point {point} with coords {(point.x, point.y, point.z)} " +
f"is too far from centre {self.centre} " +
f"to have radius {self.radius}"
)
def add_intermediate_point(self, idx, proportion):
"""
Adds a point to wire idx at proportion.
"""
self.check_fixed_points()
edge = self.edge_idx(idx)
new_point = edge.positionAt(proportion)
self.intermediate_points[idx].append(new_point)
def check_fixed_points(self):
if not all(self.fixed_points):
raise RuntimeError(
'Not all fixed points were supplied before ' +
'calling a method that needed them'
)
class Loop:
"""
~~Either the kidney shape or the circular shape.~~
Now just the kidney shape.
"""
def __init__(self, wires=None):
if wires is None:
wires = []
self.wires = wires
def check(self):
# check that endpoint of one arc is the startpoint of the next
# sugggest itertools.cycle for the looping aspect
raise NotImplementedError('TODO Loop.check()')
def wire(self):
"""
Returns all the wires connected into a single cq.Wire
"""
# return Wire.combine(self.wires)[0]
list_of_edges = []
for wire in self.wires:
list_of_edges.extend(wire.list_of_edges)
return Wire.assembleEdges(list_of_edges)
# I think I would actually prefer the two following functions as a class, init
# from top_rad, top_pos, inner_kidney_rad, outer_kidney_rad and do the
# calculations in methods. A job for the next interation.
def tangential_points(
top_rad,
top_pos,
port_rad,
port_pos,
side,
):
"""
Calculate the tangential points between two circles with radius and
position described by the arguments. This generates several options, pick
the points according to side.
TODO Consider rewriting to use:
http://jwilson.coe.uga.edu/EMAT6680Su06/Byrd/Assignment
Six/RBAssignmentSix.html
"""
if not isinstance(top_pos, Vector):
top_pos = Vector(top_pos)
if not isinstance(port_pos, Vector):
port_pos = Vector(port_pos)
x1, y1 = port_pos.x, port_pos.y
r1 = port_rad
x2, y2 = top_pos.x, top_pos.y
r2 = top_rad
gamma = -math.atan((y2 - y1) / (x2 - x1))
beta = math.asin((r2 - r1) / math.sqrt(
(x2 - x1) ** 2 + (y2 - y1) ** 2
))
# create results for both the plus and minus case of beta
results = {}
for name, sign in zip(["pos", "neg"], [1, -1]):
alpha = gamma - sign * beta
results[name] = {
"x3": x1 + sign * r1 * math.sin(alpha),
"y3": y1 + sign * r1 * math.cos(alpha),
"x4": x2 + sign * r2 * math.sin(alpha),
"y4": y2 + sign * r2 * math.cos(alpha),
}
# need to find the result on the correct side
# this could be done in like 4 lines, but would be harder to read...
if side.lower() == "+x":
if results["pos"]["x3"] > results["neg"]["x3"]:
answer = "pos"
else:
answer = "neg"
elif side.lower() == "-x":
if results["pos"]["x3"] < results["neg"]["x3"]:
answer = "pos"
else:
answer = "neg"
elif side.lower() == "+y":
if results["pos"]["y3"] > results["neg"]["y3"]:
answer = "pos"
else:
answer = "neg"
elif side.lower() == "-y":
if results["pos"]["y3"] < results["neg"]["y3"]:
answer = "pos"
else:
answer = "neg"
else:
raise ValueError(f"side {side} is not recognised")
answer0 = results[answer]
c_point = Vector(answer0["x4"], answer0["y4"], top_pos.z)
k_point = Vector(answer0["x3"], answer0["y3"], 0)
return c_point, k_point
def normal_points(
top_rad,
top_pos,
inner_kidney_rad,
outer_kidney_rad,
side,
):
"""
Calculate the normal points between a circle and a kidney shape.
Takes a line between the origin (which is the centre of the kidney's major
arcs) and the centre of the circle. Where this lines intercepts the kidney
edge and circular edge are the normal points.
"""
top_pos = Vector(top_pos)
top_z = top_pos.z
top_pos = Vector(top_pos.x, top_pos.y)
if side.lower() == "+y":
scale = inner_kidney_rad
sign = -1
else:
scale = outer_kidney_rad
sign = 1
k_point = Vector(top_pos.normalized().multiply(scale))
c_point = top_pos + top_pos.normalized().multiply(sign * top_rad)
c_point = Vector(c_point.x, c_point.y, top_z)
return c_point, k_point
def kidney_and_circle_wires(
top_rad,
top_pos,
bot_inner_rad,
bot_outer_rad,
):
"""
Start with the 4 known points, the tangential points and normal points. We
want to finish with 4 wires per shape going between these 4 points. But the
kidney shaped wire also has 4 changes in radius, meaning that it must
consist of 8 edges. To get the correct ruledSurface, make the circle wire
have the same number of edges as the kidney wire and the start/endpoints at
the same proportions.
"""
if not isinstance(top_pos, Vector):
top_pos = Vector(top_pos)
port_rad = (bot_outer_rad - bot_inner_rad) / 2
port_pos_x_axis = Vector((bot_inner_rad + bot_outer_rad) / 2, 0)
port_pos_y_axis = Vector(0, -(bot_inner_rad + bot_outer_rad) / 2)
# calculate tangential points
circle_tangent_point_0, kidney_tangent_point_0 = tangential_points(
top_rad,
top_pos,
port_rad,
port_pos_x_axis,
"+X"
)
circle_tangent_point_1, kidney_tangent_point_1 = tangential_points(
top_rad,
top_pos,
port_rad,
port_pos_y_axis,
"-Y"
)
# calculate control points
circle_normal_point_inner, kidney_normal_point_inner = normal_points(
top_rad,
top_pos,
bot_inner_rad,
bot_outer_rad,
"+Y"
)
circle_normal_point_outer, kidney_normal_point_outer = normal_points(
top_rad,
top_pos,
bot_inner_rad,
bot_outer_rad,
"-Y"
)
# create kidney shape wires
kidney_loop = Loop()
# wire0 goes from the inner normal to tangent 0
arc0 = Arc(
startpoint=kidney_normal_point_inner,
endpoint=Vector(bot_inner_rad, 0),
radius=-bot_inner_rad,
)
if kidney_tangent_point_0.y > 0:
# up to tangent_point_0
arc1 = Arc(
startpoint=arc0.endpoint,
endpoint=kidney_tangent_point_0,
radius=port_rad,
)
# up to the radius change, this belongs in wire1
arc2 = Arc(
startpoint=arc1.endpoint,
endpoint=Vector(bot_outer_rad, 0),
radius=port_rad
)
edges0 = [arc0, arc1]
edges1 = [arc2]
else:
# up to the radius change
arc1 = Arc(
startpoint=arc0.endpoint,
endpoint=Vector(bot_outer_rad, 0),
radius=port_rad
)
# up to tangent_point_0, still in wire0
arc2 = Arc(
startpoint=arc1.endpoint,
endpoint=kidney_tangent_point_0,
radius=port_rad
)
edges0 = [arc0, arc1, arc2]
edges1 = []
wire0 = Wire.assembleEdges(edges0)
kidney_loop.wires.append(wire0)
# wire1 goes from the first tangential point to the second normal point
# edges1 might already have an arc in it
arc3 = Arc(
startpoint=arc2.endpoint,
endpoint=kidney_normal_point_outer,
radius=bot_outer_rad,
)
edges1.append(arc3)
wire1 = Wire.assembleEdges(edges1)
kidney_loop.wires.append(wire1)
# wire2 goes from the outer normal point to the second tangential point
if kidney_tangent_point_1.x > 0:
# up to tangent_point_1
arc4 = Arc(
startpoint=arc3.endpoint,
endpoint=kidney_tangent_point_1,
radius=bot_outer_rad,
)
edges2 = [arc4]
arc5 = Arc(
startpoint=arc4.endpoint,
endpoint=Vector(0, -bot_outer_rad),
radius=bot_outer_rad,
)
edges3 = [arc5]
else:
# up to the radius change
arc4 = Arc(
startpoint=arc3.endpoint,
endpoint=Vector(0, -bot_outer_rad),
radius=bot_outer_rad,
)
# up to tangent_point_1
arc5 = Arc(
startpoint=arc4.endpoint,
endpoint=kidney_tangent_point_1,
radius=port_rad,
)
edges2 = [arc4, arc5]
edges3 = []
wire2 = Wire.assembleEdges(edges2)
kidney_loop.wires.append(wire2)
arc6 = Arc(
startpoint=arc5.endpoint,
endpoint=Vector(0, -bot_inner_rad),
radius=port_rad,
)
edges3.append(arc6)
arc7 = Arc(
startpoint=arc6.endpoint,
endpoint=arc0.startpoint,
radius=-bot_inner_rad,
)
edges3.append(arc7)
wire3 = Wire.assembleEdges(edges3)
kidney_loop.wires.append(wire3)
# map points onto circular arc
circle_loop = UpperWire(top_pos, top_rad)
pnts = [
circle_normal_point_inner,
circle_tangent_point_0,
circle_normal_point_outer,
circle_tangent_point_1,
]
for idx, pnt in enumerate(pnts):
circle_loop.add_fixed_point(idx, pnt)
for idx, kwire in enumerate(kidney_loop.wires):
for proportion in kwire.proportions():
circle_loop.add_intermediate_point(idx, proportion)
return kidney_loop.wire(), circle_loop.wire()