-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.qmd
979 lines (786 loc) · 34.2 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
---
title: "Downscaling AquaMaps"
subtitle: "v01: blue whale, GEBCO SoCal"
author: "Benjamin D. Best <[email protected]>"
date: now
date-format: "YYYY-MM-DD HH:mm (z)"
format:
html:
toc: true
toc-depth: 3
number-sections: true
shift-heading-level-by: -1
code-fold: true
code-tools: true
docx:
toc: true
toc-depth: 3
number-sections: true
shift-heading-level-by: -1
code-fold: true
bibliography: "mbon-bio-idx.bib"
editor_options:
chunk_output_type: console
---
## Overview
**Goal**: Downscale [AquaMaps.org](https://aquamaps.org) species distributions [@kaschnerAquaMapsPredictedRange2023;@readyPredictingDistributionsMarine2010] from 0.5 decimal degrees to 15 arc seconds (111.11 km to `r (111.11 / 60 / 60 * 15) |> round(2)` km at the equator), using the R package [`aquamapsdata`](https://raquamaps.github.io/aquamapsdata/index.html) and the the General Bathymetric Chart of the Oceans [GEBCO](https://www.gebco.net/).
We start with the "Blue Whale" ([_Balaenoptera musculus_](https://aquamaps.org/preMap2.php?cache=1&SpecID=ITS-Mam-180528)) and Southern California.
Later we'll iterate over species and expand to global, which will require large raster handling techniques using Cloud-Optimized GeoTIFFS (COGs; see [cogeo.org](https://www.cogeo.org)).
All code and files (except the large global GEBCO grid) are found in this repository:
- [github.com/marinebon/aquamaps-downscaled](https://github.com/marinebon/aquamaps-downscaled)
```{r qmd_setup, include=FALSE}
knitr::opts_chunk$set(
echo = T,
message = F,
warning = F)
if (!knitr::is_html_output())
knitr::opts_chunk$set(
echo = F)
```
```{r}
#| label: setup
# packages ----
if (!"librarian" %in% installed.packages())
install.packages("librarian")
if (!"rcrypt" %in% installed.packages())
devtools::install_bitbucket("bklamer/rcrypt") # dependency for aquamapsdata
librarian::shelf(
bklamer/rcrypt,
raquamaps/aquamapsdata,
dplyr, ggplot2, glue, here, knitr, leaflet,
# TODO: migrate raster to terra
# terra,
raster, rnaturalearth, sf, stringr, tidyr,
quiet = T)
select = dplyr::select
# initial run-once step required to install remote db locally
# download_db(force = TRUE)
# aquamaps database ----
am_db <- default_db("sqlite")
# paths ----
dir_big <- "/Users/bbest/big"
gebco_nc <- glue("{dir_big}/gebco_2022_sub_ice_topo/GEBCO_2022_sub_ice_topo.nc")
gebco_socal_tif <- here("data/gebco_socal.tif")
land_socal_geo <- here("data/land_socal.geojson")
bo_tif <- here("data/bio-oracle.tif")
# custom functions ----
add_ocean_basemap <- function(m){
# m: leaflet() map
m |>
# add base: blue bathymetry and light brown/green topography
addProviderTiles(
"Esri.OceanBasemap",
options = providerTileOptions(
variant = "Ocean/World_Ocean_Base")) |>
# add reference: placename labels and borders
addProviderTiles(
"Esri.OceanBasemap",
options = providerTileOptions(
variant = "Ocean/World_Ocean_Reference"))
}
add_am_raster <- function(
m,
r,
title,
cols = c("#FEB24C", "#FD8D3C", "#FC4E2A", "#E31A1C", "#B10026"),
truncate_to_zero = T){
# m: leaflet() map
# r: raster
# TODO: migrate to terra::rast()
# r = r_gebco_bb
# title = "GEBCO depth (m)"
# cols = RColorBrewer::brewer.pal(7, "Blues")
r <- leaflet::projectRasterForLeaflet(r, method = "bilinear")
# truncate to 0 to prevent negative values
# that were generated by projecting the raster
# from geographic projection (decimal degrees) to Web Mercator (meters)
if (truncate_to_zero){
v <- values(r)
v[v<0] <- 0
values(r) <- v
}
pal <- leaflet::colorBin(
cols, na.omit(unique(values(r))),
bins = length(cols), pretty = TRUE, na.color = "#00000000")
e <- raster::extent(r) |>
sf::st_bbox() |>
st_as_sfc() |>
st_as_sf(crs=3857) |>
st_transform(4326) |>
st_bbox()
m |>
leaflet::addRasterImage(
r, project = F, colors = pal, opacity = 0.8) |>
addLegend(
values = raster::values(r),
title = title, pal = pal) |>
leaflet::fitBounds(
lng1 = e[["xmin"]],
lat1 = e[["ymin"]],
lng2 = e[["xmax"]],
lat2 = e[["ymax"]])
}
```
## Species map (blue whale)
```{r}
#| label: fig-blue_whale_map
#| fig-cap: Map of blue whale (_Balaenoptera musculus_) distribution from AquaMaps.
# fuzzy search allows full text search operators AND, OR, NOT and +
# see https://www.sqlitetutorial.net/sqlite-full-text-search/
sp_term <- "blue whale"
key <- am_search_fuzzy(search_term = sp_term) |>
pull(key) # "ITS-Mam-180528"
# get the identifier for the species
r <- am_raster(key)
# show the native habitat map
m <- leaflet() |>
add_ocean_basemap() |>
add_am_raster(r, title = sp_term)
m
```
### Zoom to SoCal
Notice the very large pixels, far bigger than useful for smaller planning purposes, such as for Sanctuaries or BOEM Wind Energy Areas.
```{r}
#| label: fig-blue_whale_map_socal
#| fig-cap: Map of blue whale (_Balaenoptera musculus_) distribution from AquaMaps zoomed into Southern California. Notice the very large pixels, far bigger than useful for smaller planning purposes, such as for Sanctuaries or BOEM Wind Energy Areas.
# Southern California
bbox <- c(-121, 32, -117, 35)
m |>
fitBounds(lng1 = bbox[1], lat1 = bbox[2], lng2 = bbox[3], lat2 = bbox[4])
```
## Environmental preferences
Here are the environmental preferences for the species in the database.
```{r}
#| label: tbl-blue_whale_env
#| tbl-cap: Table of blue whale (_Balaenoptera musculus_) environmental suitability parameters from Aquamaps.
sp_env <- am_hspen() |>
filter(SpeciesID == key) |>
head(1) |>
collect()
sp_env |>
mutate(across(everything(), as.character)) |>
pivot_longer(everything()) |>
kable()
```
Now let's convert all variables having `{Var}YN == 1` into the relative environmental suitability rhomboids [@kaschnerMappingWorldwideDistributions2006].
```{r}
#| label: tbl-blue_whale_env_yes
#| tbl-cap: Table environmental suitability parameters from Aquamaps that are applicable to blue whale (_Balaenoptera musculus_), i.e. `{Var}YN == 1` in @tbl-blue_whale_env.
var <- "Depth"
d_probs <- tribble(
~prob_name, ~prob_value,
"Min" , 0,
"PrefMin" , 1,
"PrefMax" , 1,
"Max" , 0)
vars_yes <- sp_env |>
select(ends_with("YN")) |>
pivot_longer(
everything()) |>
filter(value == 1) |>
pull(name) |>
str_replace("YN","")
d <- sp_env |>
select(starts_with(vars_yes)) |>
select(!ends_with("YN")) |>
pivot_longer(
everything(),
values_to = "var_value") |>
separate_wider_regex(
name,
c(var = paste(vars_yes, collapse = "|"), # "",
prob_name = paste(d_probs$prob_name, collapse = "|"))) |>
left_join(
d_probs,
by = "prob_name")
kable(d)
```
```{r}
#| label: fig-blue_whale_env_yes
#| fig-cap: Plots of environmental suitability parameters from Aquamaps that are applicable to blue whale (_Balaenoptera musculus_) from @tbl-blue_whale_env_yes.
g <- ggplot(d, aes(var_value, prob_value)) +
geom_area() +
theme_light() +
facet_wrap(
vars(var),
scales = "free") +
labs(
title = sp_term,
subtitle = "environmental envelope",
x = NULL,
y = "probability of presence")
g
```
## Depth (GEBCO) for SoCal
```{r}
#| label: fig-depth_socal
#| fig-cap: Map of depth from GEBCO zoomed into Southern California. Notice the much higher resolution compared to @fig-blue_whale_map_socal.
# limit to bounding box for now
ply_bb <- extent(
c(bbox[1], bbox[3], bbox[2], bbox[4])) |>
st_bbox() |>
st_as_sfc() |>
st_as_sf(crs = 4326)
# land
if (!file.exists(land_socal_geo)){
ply_land <- ne_download(
scale = 10, # 110/50/10: high spatial resolution (10 m)
type = "land",
category = "physical",
returnclass = "sf")
# plot(ply_land)
ply_land_bb <- ply_land |>
st_intersection(ply_bb)
# plot(ply_land_bb)
write_sf(ply_land_bb, land_socal_geo)
}
ply_land_bb <- read_sf(land_socal_geo)
# plot(ply_land_bb)
if (!file.exists(gebco_socal_tif)){
# read large GEBCO netcdf file outside repo
r_gebco <- raster(gebco_nc)
# crop to SoCal bounding box
r_gebco_bb <- r_gebco |>
crop(ply_bb)
# mask out land, ie > 0
r_gebco_bb <- r_gebco_bb |>
mask(r_gebco_bb <= 0, maskvalue = 0) * -1
# write to TIF
writeRaster(r_gebco_bb, gebco_socal_tif, overwrite = T)
}
r_gebco_bb <- raster(gebco_socal_tif)
m <- leaflet() |>
add_ocean_basemap() |>
add_am_raster(
r = r_gebco_bb,
title = "GEBCO depth (m)",
cols = RColorBrewer::brewer.pal(7, "Blues"))
m
```
## Ramp depth with species preference
### Create `ramp_env()` function
```{r}
#| label: fig-ramp_env
#| fig-cap: Plot of original depth preferences for 4 points (black circles) and interpolated values (red asterisks) using new `ramp_env()` function.
ramp_env <- function(v, min, min_pref, max, max_pref){
x <- c(min, min_pref, max, max_pref)
y <- c( 0, 1, 1, 0)
approx(
x, y,
xout = v,
yleft = 0,
yright = 0,
rule = 2,
method = "linear")$y
}
p <- d |>
filter(var == !!var)
p <- setNames(p$var_value, p$prob_name) |> as.list()
# p
# Min PrefMin PrefMax Max
# 0 1000 4000 8000
x_pref <- c(p$Min, p$PrefMin, p$PrefMax, p$Max)
y_pref <- c( 0, 1, 1, 0)
x_new <- seq(-200, 10000, by=100)
y_new <- ramp_env(x_new, p$Min, p$PrefMin, p$PrefMax, p$Max)
plot(
x_pref,
y_pref,
xlim = range(c(x_pref, x_new), na.rm=T),
ylim = range(c(y_pref, y_new), na.rm=T),
xlab = var,
ylab = sp_term)
points(x_new, y_new, col = 2, pch = "*")
```
### Apply to SoCal
Apply the `ramp_env()` function to the SoCal depth using `r {sp_term}` preferences.
```{r}
#| label: fig-map_sp_depth_bb
#| fig-cap: Map of depth preference for `r sp_term` applied to SoCal depth with the `ramp_env()` function.
r_sp_depth_bb <- terra::app(
x = terra::rast(r_gebco_bb),
fun = ramp_env,
min = p$Min,
min_pref = p$PrefMin,
max_pref = p$PrefMax,
max = p$Max) |>
raster()
m <- leaflet() |>
add_ocean_basemap() |>
add_am_raster(
r = r_sp_depth_bb,
title = glue("{sp_term}, {var} only"))
m
```
## `sdmpredictors`
```{r}
#| label: bio-oracle bo_tif
librarian::shelf(
sdmpredictors, skimr)
# exploring the marine datasets
datasets <- list_datasets(terrestrial = FALSE, marine = TRUE)
kable(datasets)
# exploring the marine layers
layers <- list_layers(datasets)
# names(layers)
# skim(layers)
# table(layers$dataset_code)
# Bio-ORACLE MARSPEC
# 918 42
# table(layers$primary_type)
# '' GEBCO / EMODnet Bathymetry
# 1 3
# in situ measurement in situ measurements, monthly climatologies
# 7 17
# Model Satellite (Aqua-MODIS), monthly climatologies
# 831 31
# Satellite (Aqua-MODIS), seasonal climatologies Satellite (SeaWIFS), monthly climatologies
# 2 4
# Satellite (SRTM) Satellite (Terra-MODIS), monthly images
# 7 6
# satellite imagery
# 51
# table(layers$units)
# % Celsius degrees degrees Celcius E/m^2/year Einstein/m_/day fraction
# 6 21 2 72 54 4 18
# g/m^3/day kilometers m m/s m^-1 meters mg/m^3
# 72 1 18 72 6 4 76
# micromol/L micromol/m^3 ml/l mol/m^3 PSS psu radians
# 3 432 1 2 73 17 2
# unitless
# 4
# layers |>
# select(
# layer_code, name, description, units,
# primary_spatial_resolution, primary_source) |>
# filter(str_detect(description, regex("roductivity", ignore_case = T))) |>
# filter(str_detect(description, regex("Mean sea surface net primary productivity", ignore_case = T))) |>
# filter(str_detect(description, regex("Sea surface temperature (mean)", ignore_case = T))) |>
# filter(str_detect(description, regex("salinity", ignore_case = T))) |>
# filter(str_detect(description, regex("ice", ignore_case = T))) |>
# View()
# https://aquamaps.org/main/files/HCAF_v7.zip
#
# - PrimProdMean: Original unit in gC·m-3·day-1, converted to mgC·m-3·day-1. If OceanArea=0 (i.e. land cell), non-zero values were set to null (53 cells). Bio-ORACLE grid only goes down to 78.5 S, 1,869 ocean cells tagged -9999.
# layers |>
# filter(layer_code == "BO22_ppmean_ss") |>
# mutate(across(everything(), as.character)) |>
# pivot_longer(everything()) |>
# kable()
# units: g/m^3/day
# get Bio-Oracle (BO) latest version (22)
lyrs <- c(
Temp = "BO22_tempmean_ss",
Salinity = "BO22_salinitymean_ss",
PrimProd = "BO22_ppmean_ss",
IceCon = "BO22_icecovermean_ss")
# download to temporary directory
if (!file.exists(bo_tif)){
stk <- load_layers(lyrs, datadir = here("data/bio-oracle/temp"))
# class : RasterStack
# dimensions : 2160, 4320, 9331200, 4 (nrow, ncol, ncell, nlayers)
# resolution : 0.08333333, 0.08333333 (x, y)
# extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
# crs : +proj=longlat +datum=WGS84 +no_defs
# names : BO22_tempmean_ss, BO22_salinitymean_ss, BO22_ppmean_ss, BO22_icecovermean_ss
# min values : -1.797733, 0.059304, 0.000060, 0.000000
# max values : 30.178629, 40.651300, 0.257881, 0.974730
# get x arg for [ee.Image.interpolate()](https://developers.google.com/earth-engine/apidocs/ee-image-interpolate)
# d |>
# # filter(var == "Temp") |> # -1.8, -1.3, 27.87, 32.07
# # filter(var == "Salinity") |> # 3.58, 32.57, 35.49, 38.84
# # filter(var == "PrimProd") |> # 0.1, 1.4, 16.07, 119.58
# filter(var == "IceCon") |> # -0.88, 0, 0.49, 0.96
# pull(var_value) |>
# paste(collapse=", ") |>
# cat()
raster::writeRaster(stk, bo_tif)
}
# librarian::shelf(terra)
# plet(rast(bo_tif)[[1]])
```
## manual upload with retry
```{r}
#| label: upload to GCS, GEE
#| eval: false
librarian::shelf(googleCloudStorageR)
gcs_auth_json <- "/Users/bbest/My Drive/private/offhab-google-service-account_09e7228ac965.json"
gcs_bucket <- "offhab_lyrs"
name <- "bio-oracle.tif"
Sys.setenv(
"GCS_DEFAULT_BUCKET" = gcs_bucket,
"GCS_AUTH_FILE" = gcs_auth_json)
u <- googleCloudStorageR::gcs_upload(
file = bo_tif,
bucket = "offhab_lyrs",
name = basename(bo_tif))
# ℹ 2023-07-30 18:38:57.609799 > Found resumeable upload URL: https://www.googleapis.com/upload/storage/v1/b/offhab_lyrs/o/?uploadType=resumable&name=bio-oracle.tif&predefinedAcl=private&upload_id=ADPycduT4eJUJFQA3c-cdYj6U-3ljbVu6IItZxtQi3WyE68uSdBS_o6uuL1Pq8kJnFvr5jdZfJgcw9_ZPGmlZKzXC3C8Zw
# retry
u2 <- googleCloudStorageR::gcs_retry_upload(u)
# https://code.earthengine.google.com/?asset=projects/eq-am-fine/assets/sdmpredictors
gcs_to_gee <- function (
gcs_name,
gee_name = fs::path_ext_remove(gcs_name),
properties = "",
gcs_bucket = "offhab_lyrs",
gee_asset = "projects/eq-am-fine/assets/sdmpredictors",
pyramiding_policy = "MEAN"
# missing_data = 255
){
f_json <- tempfile(fileext = ".json")
properties_json <- jsonlite::toJSON(properties, pretty = T,
auto_unbox = T)
# writeLines(glue::glue("{{\n \"name\": \"{gee_asset}/{gee_name}\",\n \"tilesets\":[{{\"sources\":[{{\"uris\":[\"gs://{gcs_bucket}/{gcs_name}\"]}}]}}],\n \"pyramidingPolicy\":\"MEAN\",\n \"properties\": {properties_json},\n \"missing_data\":{{\"values\":[{missing_data}]}}\n }}"),
writeLines(glue::glue("{{\n \"name\": \"{gee_asset}/{gee_name}\",\n \"tilesets\":[{{\"sources\":[{{\"uris\":[\"gs://{gcs_bucket}/{gcs_name}\"]}}]}}],\n \"pyramidingPolicy\":\"MEAN\",\n \"properties\": {properties_json} }}"),
f_json)
cmd <- glue::glue("earthengine upload image --manifest '{f_json}'")
message(cmd)
system(cmd)
return(glue("{gee_asset}/{gee_name}"))
}
gcs_to_gee(
basename(bo_tif),
properties = list(
source = "sdmpredictors"))
# readLines("/var/folders/sl/7s3zmk1129jcrgsn1c4hcs2r0000gn/T//Rtmp2X9EGE/file5883322f397b.json") |> cat()
# tif <- "/Users/bbest/Downloads/depth_m0000000000-0000000000.tif"
# tif <- "/Users/bbest/Downloads/depth_m0000023552-0000000000.tif"
# tif <- "/Users/bbest/Downloads/depth_m0000376832-0000000000.tif"
# r <- rast(tif)
# r
# terra::plet(r)
```
- [problems here possibly in version 0.6-1 of stars](https://github.com/r-spatial/stars/commit/b70735ac26c58155ecc6b137d2dcdde586b03f4b#diff-51920e95310ebfbc1ae31709f3b95f89afffbf4f1a6e38e8b2b406e2fb6197eaR3)
> # version 0.6-1
> * `[<-.stars_proxy()` clones environment, so that after `r[r > 100]<-NA` we don't get infinite recursion when realizing `r`
- [General Bathymetric Chart of the Oceans (GEBCO) - awesome-gee-community-catalog](https://gee-community-catalog.org/projects/gebco/)
- [Resampling and Reducing Resolution | Google Earth Engine | Google for Developers](https://developers.google.com/earth-engine/guides/resample)
Generate from ramps in GEE with:
- [`ee.Algorithms.If()`](https://developers.google.com/earth-engine/guides/ic_mapping)
- [Computations using Images | Google Earth Engine | Google for Developers](https://developers.google.com/earth-engine/tutorials/tutorial_api_03)
- [javascript - Google Earth Engine: Apply scaling function to band values of image - Geographic Information Systems Stack Exchange](https://gis.stackexchange.com/questions/368016/google-earth-engine-apply-scaling-function-to-band-values-of-image)
- [Applying Raster Calculation to Image Collection in Google Earth Engine - Geographic Information Systems Stack Exchange](https://gis.stackexchange.com/questions/370706/applying-raster-calculation-to-image-collection-in-google-earth-engine)
- [`Image.unitScale(low, high)`](https://developers.google.com/earth-engine/apidocs/ee-image-unitscale)
- [google earth engine - Rescale NDVI [-1,1] to 0-255 using GEE - Geographic Information Systems Stack Exchange](https://gis.stackexchange.com/questions/418562/rescale-ndvi-1-1-to-0-255-using-gee)
## Try COG
- [GEE: export_depth](https://code.earthengine.google.com/?scriptPath=users%2Fben-ecoquants%2Faquamaps-downscaled%3Aexport_depth)
```{r cog, eval=FALSE}
# devtools::install_github("r-spatial/stars")
librarian::shelf(
offshorewindhabitat/offhabr, glue, here, fs, stars, terra)
depth_tif <- glue("{path_ext_remove(gebco_nc)}_bathy.tif")
depth_cog <- glue("{path_ext_remove(gebco_nc)}_bathy_cog.tif")
# read large GEBCO netcdf file outside repo
r_gebco <- rast(gebco_nc)
# terra::writeRaster(r_gebco, depth_cog)
r_d190 <- read_stars(gebco_nc) |>
st_downsample(190)
r_d190[r_d190 > 0] = NA
plot(r_d190)
system.time({r <- rast(gebco_nc)}) # 10516.380 secs elapsed
system.time({r[r > 0] = NA}) # 5915.483 secs elapsed
system.time({r <- r * -1}) # 190.878 secs elapsed
system.time({writeRaster(r, depth_tif, datatype = "INT2U")})
r <- rast(depth_tif)
system.time({
offhabr::write_rast(
# r,
depth_tif,
depth_cog,
datatype = "INT2U",
overwrite = TRUE,
method = "average",
threads = "ALL_CPUS",
epsg = 4326,
verbose = T,
web_optimize = F,
use_gdal_cog = T) # system.time(): 2183.913 secs elapsed
})
# install.packages("googleCloudStorageR")
librarian::shelf(googleCloudStorageR)
# ✔ Setting scopes to https://www.googleapis.com/auth/devstorage.full_control and https://www.googleapis.com/auth/cloud-platform
# ✔ Successfully auto-authenticated via /Users/bbest/My Drive/private/offhab-google-service-account_09e7228ac965.json
# ✔ Set default bucket name to 'offhab_lyrs'
upload_to_gcs(
file = depth_cog,
name = "depth_gebco_m.tif",
make_public = T,
gcs_auth_json =
"/Users/bbest/My Drive/private/offhab-google-service-account_09e7228ac965.json",
gcs_bucket = "offhab_lyrs") # 3 GB at 3 MBPS: 2 hrs 23 mins
# ℹ 2023-07-30 14:58:35.94178 > File size detected as 3.1 Gb
# ℹ 2023-07-30 14:58:37.120278 > Found resumeable upload URL: https://www.googleapis.com/upload/storage/v1/b/offhab_lyrs/o/?uploadType=resumable&name=depth_gebco_m.tif&predefinedAcl=private&upload_id=ADPycdun6IdndMKBjpKcpL2KvQV145Q6pzsFt5F7-c7ZdRgtmzTH_-sSe9JfKUebpJiKZib-a6MCKYyGFzNh9hYABimF
# manual upload with retry
gcs_auth_json <- "/Users/bbest/My Drive/private/offhab-google-service-account_09e7228ac965.json"
gcs_bucket <- "offhab_lyrs"
name <- "depth_gebco_m.tif"
Sys.setenv(
"GCS_DEFAULT_BUCKET" = gcs_bucket,
"GCS_AUTH_FILE" = gcs_auth_json)
u <- googleCloudStorageR::gcs_upload(
file = depth_cog,
bucket = "offhab_lyrs",
name = name)
Sys.time()
tif <- "/Users/bbest/Github/marinebon/aquamaps-downscaled/data/gebco_socal_cog.tif"
u <- googleCloudStorageR::gcs_upload(
file = tif,
bucket = "offhab_lyrs",
name = basename(tif))
# make publicly available
googleCloudStorageR::gcs_update_object_acl(
basename(tif), entity_type = "allUsers")
# retry
u2 <- googleCloudStorageR::gcs_retry_upload(u)
# make publicly available
googleCloudStorageR::gcs_update_object_acl(
name, entity_type = "allUsers")
Sys.time()
# TODO: upload depth_cog to GCStorage and try in leaflet
# OLD...
write_stars(st_g, depth_cog, type="Int16")
s <- read_stars(depth_cog)
plot(s)
st_gebco <- read_stars(
depth_cog,
proxy=T)
plot(st_gebco < 0) # downsample set to 190
system.time({
st_gebco[st_gebco > 0] = NA # system.time(): mins elapsed
})
plot(st_gebco, downsample=190)
# Error in `[<-.stars`(x = x, i = i, value = value, downsample = downsample) :
# unused argument (downsample = downsample)
# https://github.com/r-spatial/stars/issues/627
write_stars(st_gebco, depth_cog)
plot(st_gebco)
system.time({
st_gebco <- st_gebco * -1 # system.time(): 4.042083 mins elapsed
})
```
```{r gdalcubes, eval=FALSE}
librarian::shelf(
gdalcubes, glue, here, fs, stars, terra)
gebco_socal_cog <- glue("{path_ext_remove(gebco_socal_tif)}_cog.tif")
r <- read_stars(gebco_socal_tif)
d <- stars::st_dimensions(r)
# does not work:
# file_delete(gebco_socal_cog)
# write_stars(r, gebco_socal_cog, driver="COG", type="UInt16")
ic <- create_image_collection(
files = gebco_socal_tif,
date_time = as.Date("1970-01-01"))
cv <- cube_view(
extent = extent(ic,"EPSG:4326"),
srs = "EPSG:4326",
dt = "P1Y",
nx = d$x$to,
ny = d$y$to,
aggregation = "mean",
resampling = "bilinear")
write_tif(
raster_cube(ic, cv),
dir = here("data"),
prefix = "cube_",
overviews = T,
COG = T,
rsmpl_overview = "bilinear",
creation_options = NULL,
write_json_descr = T)
# cube_1970-01-01.tif
```
```{r leafem.addCOG, eval=F}
librarian::shelf(
r-spatial/leafem, leaflet, stars, viridisLite)
url <- "https://storage.googleapis.com/offhab_lyrs/cube_1970-01-01.tif"
r <- rast(glue("/vsicurl/{url}"))
pal = hcl.colors(256, "inferno")
brks = NULL
myCustomJSFunc = htmlwidgets::JS(
"
pixelValuesToColorFn = (raster, colorOptions) => {
const cols = colorOptions.palette;
var scale = chroma.scale(cols);
if (colorOptions.breaks !== null) {
scale = scale.classes(colorOptions.breaks);
}
var pixelFunc = values => {
let clr = scale.domain([raster.mins, raster.maxs]);
if (isNaN(values)) return colorOptions.naColor;
if (values < 50) return chroma('pink').alpha(0.7).hex();
return clr(values).hex();
};
return pixelFunc;
};
"
)
leaflet() |>
addTiles() |>
addCOG(
url = url,
layerId = "band1",
group = "COG",
resolution = 512,
opacity = 0.9,
autozoom = TRUE,
colorOptions = colorOptions(
palette = viridisLite::inferno,
breaks = seq(1,5349, by=500),
na.color = "transparent"))
# colorOptions = leafem:::colorOptions(
# palette = pal, #viridisLite::cividis
# # breaks = brks,
# na.color = "transparent"),
# pixelValuesToColorFn = myCustomJSFunc)
```
```{r}
librarian::shelf(offhabr)
base_opacity = 0.5
cog_range = c(1, 5349)
cog_method = "average"
cog_palette = "spectral_r"
cog_opacity = 0.9
# lgnd_palette = "Spectral"
# lgnd_palette_r = TRUE
cog_url <- "https://storage.googleapis.com/offhab_lyrs/cube_1970-01-01.tif"
tile_opts <- glue(
"resampling_method={cog_method}&rescale={paste(cog_range, collapse=',')}&return_mask=true&colormap_name={cog_palette}")
tile_url <- glue(
"https://api.cogeo.xyz/cog/tiles/WebMercatorQuad/{{z}}/{{x}}/{{y}}@2x?url={cog_url}&{tile_opts}")
# oh_map_cog_lyr("cube_1970-01-01")
oh_map() |>
addTiles(
urlTemplate=tile_url,
options = tileOptions(
opacity = cog_opacity))
```
* [How do I set up CORS for my Google Cloud Storage Bucket?](https://developer.bitmovin.com/encoding/docs/how-do-i-set-up-cors-for-my-google-cloud-storage-bucket)
```bash
echo '[{"origin": ["*"],"responseHeader": ["*"],"method": ["GET", "HEAD"],"maxAgeSeconds": 3600}]' > cors-config.json
echo '[{"origin": ["*"],"method": ["*"]}]' > cors-config.json
gsutil cors set cors-config.json gs://offhab_lyrs
gsutil cors get gs://offhab_lyrs
```
## Next Steps
Goal: Downscale global AquaMaps with all env preferences
TODO:
- [ ] Gather finer resolution global data based on yes/no parameters (`*YN`):
```{r}
#| label: cklist_vars
#| echo: false
#| output: asis
vars_yn <- sp_env |>
select(ends_with("YN")) |>
names() |>
str_replace("YN", "")
# vars_yn <- c("Depth", "Temp", "Salinity")
vars_done <- c(
list(
Depth = "[GEBCO](https://gee-community-catalog.org/projects/gebco/)"),
lyrs)
vars_todo <- list()
txt_cks <- ifelse(vars_yn %in% names(vars_done), 'x', ' ')
txt_info <- ifelse(
vars_yn %in% names(vars_done),
vars_done[vars_yn],
ifelse(
vars_yn %in% names(vars_todo),
vars_todo[vars_yn],
""))
glue(" - [{txt_cks}] {vars_yn}: {txt_info}", .trim = F)
```
- Note: "BO22_" refers to Bio-Oracle version 2.2 from `sdmpredictors`
- [ ] Work out rest of individual species workflow
- [ ] Apply `ramp_env()` to each environmental parameter applicable to the species (ie `{var}YN ==1`)
- [ ] Average all environmental parameter grids for the species
- [ ] Clip to `NMostLat`, `SMostLat`, `WMostLong`, `EMostLong`
- [x] Mask to `FAOAreas`
- [ ] Figure out unknown fields: `ExtnRuleYN`, `MapOpt`, ...
- [ ] Repeat for workflow for ALL species
- [ ] Render maps from anywhere
- [ ] Store in COG with each species as a separate layer; or try individual layer COGs
- [ ] Upload COG to Google Cloud Storage
- [ ] Install [TiTiler](https://developmentseed.org/titiler) on MarineBON.app server
- [ ] Render map layers from COG using TiTiler in new function(s) borrowing from [`offhabr`](https://offshorewindhabitat.info/offhabr/index.html) functions like [`oh_map_cog_lyr()`](https://offshorewindhabitat.info/offhabr/reference/oh_map_cog_lyr.html)
- [ ] Build Shiny app
- [ ] Render map of selected species from dropdown
- [ ] Summarize species from drawn area
- [ ] Summarize species from selected area from existing:
- [ ] EEZ
- [ ] LME
- [ ] Sanctuary
- [ ] BOEM Wind Energy Area
- [ ] ...
- [ ] Calculate biodiversity metrics
- [ ] Richness
- [ ] Abundance
- [ ] Extinction Risk
- [ ] Endemism
- [ ] Foundation Species
- [ ] ...
## Links from GEE
TODO:
- convert Bio-Oracle SDM predictors to same resolution
- experiment with mosaic from for simple export
* [google earth engine - How to split the world in four quadrants as ee.Image - Geographic Information Systems Stack Exchange](https://gis.stackexchange.com/questions/445938/how-to-split-the-world-in-four-quadrants-as-ee-image)
* [Google Earth Engine Tutorial: Split Image By Grid and Export to Google Drive - YouTube](https://www.youtube.com/watch?v=3yqv5fZSdH4)
* [ee.ImageCollection.mosaic | Google Earth Engine | Google for Developers](https://developers.google.com/earth-engine/apidocs/ee-imagecollection-mosaic)
* [ee.ImageCollection.fromImages | Google Earth Engine | Google for Developers](https://developers.google.com/earth-engine/apidocs/ee-imagecollection-fromimages)
* [Image mosaic/composite creation for Landsat and Sentinel-2 in Google Earth Engine - openMRV](https://openmrv.org/web/guest/w/modules/mrv/modules_1/image-mosaic-composite-creation-for-landsat-and-sentinel-2-in-google-earth-engine)
Try:
* `/Users/bbest/Github/offshorewindhabitat/scripts/offhab_gee1.ipynb`
* geemap: see below
* [zarr | IOOS](https://ioos.github.io/ioos_code_lab/content/code_gallery/data_management_notebooks/2023-03-20-Reading_and_writing_zarr.html)
* [stars](https://r-spatial.github.io/stars/index.html)
- [stars proxy objects](https://r-spatial.github.io/stars/articles/stars2.html#stars-proxy-objects)
- [IPBES raster gdalcubes](https://ict.ipbes.net/ipbes-ict-guide/data-management/technical-guidelines/file-formats#b.-raster-data)
- [Large data and cloud native | Ch. 9 Spatial Data Science](https://r-spatial.org/book/09-Large.html#very-large-data-cubes)
- [Accessing data from large online rasters with Cloud-Optimized-Geotiff, GDAL, and terra R package | Francisco Rodríguez-Sánchez](https://frodriguezsanchez.net/post/accessing-data-from-large-online-rasters-with-cloud-optimized-geotiff-gdal-and-terra-r-package/)
- [Cloud-based processing of satellite image collections in R using STAC, COGs, and on-demand data cubes](https://r-spatial.org/r/2021/04/23/cloud-based-cubes.html)
* viz with leafem: seemed slow
- [new addGeoRaster method · Issue #25 · r-spatial/leafem](https://github.com/r-spatial/leafem/issues/25)
- [Add Cloud Optimised Geotiff (COG) to a leaflet map. — addCOG • leafem](https://r-spatial.github.io/leafem/reference/addCOG.html)
* [gdalcubes](https://gdalcubes.github.io) again
- [w/ rstac](https://gdalcubes.github.io/source/tutorials/vignettes/gc02_AWS_Sentinel2.html#finding-images-with-rstac)
- break up into smaller tiles
* [2.2. Generate a Regional Composite Through Spatial Tiling](https://google-earth-engine.com/Advanced-Topics/Scaling-up-in-Earth-Engine/)
* [Compositing, Masking, and Mosaicking | GEE](https://developers.google.com/earth-engine/tutorials/tutorial_api_05)\
By combining the concepts of image collections, logical operators, masking and compositing, you can achieve interesting cartographic results. For example, suppose you want an image in which land pixels are displayed in true-color and all the other pixels are displayed in blue
- other env predictors
* distance from shore
- [30-m global shorelin on GEE](https://gee-community-catalog.org/projects/shoreline/)
- [ee.Image.distance | Google Earth Engine | Google for Developers](https://developers.google.com/earth-engine/apidocs/ee-image-distance)
- [ee.Image.fastDistanceTransform | Google Earth Engine | Google for Developers](https://developers.google.com/earth-engine/apidocs/ee-image-fastdistancetransform)
* SST by month
- [GEE: GSST 2002-2019](https://gee-community-catalog.org/projects/sstg/)
- model data products
* [ECCO](https://www.ecco-group.org)
- https://podaac.jpl.nasa.gov/dataset/ECCO_L4_TEMP_SALINITY_05DEG_MONTHLY_V4R4#
- https://ecco-v4-python-tutorial.readthedocs.io/intro.html
- install titiler
* https://github.com/developmentseed/titiler
- gee tricks
* [client vs server | GEE](https://developers.google.com/earth-engine/guides/client_server)
* [GFW use of GEE](https://globalfishingwatch.org/data/public-data-google-earth-engine/)
* [Jenks natural breaks w/ SLD](https://developers.google.com/earth-engine/guides/image_visualization#styled-layer-descriptors)
- geemap
* [11 export image](https://geemap.org/notebooks/11_export_image/#download-an-eeimagecollection)
* [44 cog stac](https://geemap.org/notebooks/44_cog_stac/?h=cog#working-with-spatiotemporal-asset-catalog-stac)
* [92 plotly - geemap](https://geemap.org/notebooks/92_plotly/?h=titiler)
* [95 create cog](https://geemap.org/notebooks/95_create_cog/?query=cog)
* [100 numpy to cog](https://geemap.org/notebooks/100_numpy_to_cog/?h=cog)
* [103 split control](https://geemap.org/notebooks/103_split_control/?h=cog)
* [plotlymap module add_cog_layer()](https://geemap.org/plotlymap/?h=cog#geemap.plotlymap.Map.add_cog_layer)
* [plotlymap module add_stac_layer(](https://geemap.org/plotlymap/?h=cog#geemap.plotlymap.Map.add_stac_layer)
* [foliumap module add_cog_layer()](https://geemap.org/foliumap/?h=#geemap.foliumap.Map.add_cog_layer)
* [foliumap add_stac_layer()](https://geemap.org/foliumap/?h=#geemap.foliumap.Map.add_stac_layer)
- indicator portal
* [Data Management Tutorials - IPBES ICT guide](https://ict.ipbes.net/ipbes-ict-guide/data-management/data-management-tutorials)
- [Part 2 - Preparing and Mapping Data to IPBES Regions and Sub-regions - IPBES ICT guide](https://ict.ipbes.net/ipbes-ict-guide/data-management/technical-guidelines/preparing-and-mapping-data-to-ipbes-regions-and-sub-regions)
- [Part 11 - How to Document an Indicator - IPBES ICT guide](https://ict.ipbes.net/ipbes-ict-guide/data-management/technical-guidelines/how-to-document-an-indicator)
- Map of Life: indicators, portal setup
* [Map of Life | Map of Life](https://mol.org/)
* [Map of Life - Indicators](https://mol.org/indicators/)
* [Map of Life - Patterns](https://mol.org/patterns/)
* [Discovery Potential](https://vertlife.org/data/discoverypotential/)
## References