-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsdm_1.qmd
482 lines (376 loc) · 10.4 KB
/
sdm_1.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
---
title: "sdm_1"
format: html
editor_options:
chunk_output_type: console
---
## Goals
Create initial SDM using:
- **Observations**\
Species with most OBIS observations. Later try temporally subsetting to look for migratory patterns. And run for all.
- **Environment**\
Environmental data from `sdmpredictors`. Need to know whether demersal or pelagic. For now extract static climatic environmental predictors for model fitting and prediction. Later extract dynamic predictors synchronous in time for model fitting and predict with hind-/now-/fore-cast or climatic seasonal snapshot.
- **Model**\
Use Maxent.
## References
- [Species distribution modeling --- R Spatial](https://rspatial.org/sdm/)
- old but more: [Species distribution modeling --- R Spatial (raster)](https://rspatial.org/raster/sdm/)
## Setup
```{r}
# libraries ----
options(java.parameters = "-Xmx8000m")
librarian::shelf(
arrow, dismo, dplyr, DT, glue, here, leafem,
leaflet.extras, readr, rJava, robis, sdmpredictors, terra, sf, mapview,
quiet = T)
options(readr.show_col_types = F)
# variables -----
dir_data <- "/Users/bbest/My Drive/projects/mbon-sdm/data"
obis_prq <- glue("{dir_data}/raw/obis.org/obis_20230726.parquet")
# functions -----
get_sp_occ_obis_prq <- function(
aphia_id,
obis_prq = "/Users/bbest/My Drive/projects/mbon-sdm/data/raw/obis.org/obis_20230726.parquet",
cols_keep = c(
"id",
"phylum",
"class",
"taxonRank",
"scientificName",
"AphiaID",
"date_mid",
"decimalLongitude",
"decimalLatitude",
"depth",
"individualCount",
"flags")) {
# get species occurrences from OBIS parquet file
# TODO: add caching per species request/args
# return only observations with valid coordinates and year
o <- open_dataset(obis_prq) |>
filter(
!is.na(date_mid),
!is.na(decimalLongitude),
!is.na(decimalLatitude),
AphiaID == !!aphia_id) |>
select(all_of(cols_keep)) |>
collect() |>
mutate(
date_mid =as.POSIXct(
date_mid/1000, origin = "1970-01-01",tz = "GMT") |>
as.Date()) |>
st_as_sf(
coords = c("decimalLongitude", "decimalLatitude"),
crs = 4326)
}
```
## Species candidates
```{r}
# species with most observations
sp_gull <- read_csv("data/obis_top-species.csv") |>
arrange(desc(n_obs)) |>
slice(1)
# non-bird species with most observations
sp_herring <- read_csv("data/obis_top-species.csv") |>
filter(class != "Aves") |>
arrange(desc(n_obs)) |>
slice(1)
# species with ~100 observations (and most in Class)
sp_jelly <- read_csv("data/obis_top-species.csv") |>
filter(n_obs > 240) |>
arrange(n_obs) |>
slice(1)
```
* `sp_gull`: [_Larus fuscus_ lesser black-backed gull | WoRMS](https://www.marinespecies.org/aphia.php?p=taxdetails&id=137142)\
n_obs: 2,162,536
* `sp_herring`: [_Clupea pallasii_ Pacific herring | WoRMS](https://www.marinespecies.org/aphia.php?p=taxdetails&id=151159)\
n_obs: 1,961,525
* `sp_jelly`: [_Haliclystus auricula_ kaleidoscope jellyfish | WoRMS](https://www.marinespecies.org/aphia.php?p=taxdetails&id=135322)\
n_obs: 242
* `sp_rwhale`: [_Eubalaena glacialis_ North Atlantic right whale | WoRMS](https://www.marinespecies.org/aphia.php?p=taxdetails&id=159023)\
n_obs: 1,000
* [_Eubalaena glacialis_ | OBIS](https://obis.org/taxon/159023)
* [OBIS Mapper](https://mapper.obis.org/?taxonid=159023#)
* [_Eubalaena glacialis_ | AquaMaps](https://aquamaps.org/preMap2.php?cache=1&SpecID=ITS-Mam-180537)
## obs: N. Atlantic right whale
N Atlantic right whale (_Eubalaena glacialis_)
```{r}
# right whale: surface, migratory, endangered
sp_rwhale <- tibble(
AphiaID = 159023)
# prep single species observations ---
sp <- sp_rwhale
aphia_id <- sp$AphiaID
# get observations
obs <- get_sp_occ_obis_prq(aphia_id)
obs
# plot observations
mapView(obs) %>%
.@map |>
leaflet.extras::addFullscreenControl()
```
## env: `sdmpredictors`
```{r}
librarian::shelf(
sdmpredictors, skimr, terra)
# see ../aquamaps-downscaled/index.qmd for creation
env_tif <- here("../aquamaps-downscaled/data/bio-oracle.tif")
stopifnot(file.exists(env_tif))
env <- rast(env_tif)
names(env) <- c(
"Temp",
"Salinity",
"PrimProd",
"IceCon")
plot(env)
obs_env <- extract(env, obs, cells=T) |>
as_tibble() |>
mutate(
presence = 1)
bk_cells <- setdiff(cells(env), obs_env$cell)
bk_env <- tibble(
presence = 0,
cell = bk_cells) |>
bind_cols(
values(env)[bk_cells,]) |>
distinct(pick(all_of(names(env))), .keep_all = T)
# rows: 6,181,644 -> 6,178,309 after distinct() and na.omit()
set.seed(42)
d_env <- bind_rows(
obs_env,
bk_env |>
slice(sample(1:nrow(bk_env), nrow(obs_env)) ) ) |>
select(
presence, cell,
all_of(names(env))) |>
na.omit()
tail(d_env)
# table(d_env$presence)
# 0 1
# 6178319 7355
# 0 1
# 7359 7355
d_env
```
## model: `predicts::maxent()`
### example
```{r}
librarian::shelf(
fs, ggplot2, leaflet, predicts,
quiet = T)
#?predicts::MaxEnt
# MaxEnt()
# This is MaxEnt_model version 3.4.3
# get predictor variables
f <- system.file("ex/bio.tif", package="predicts")
preds <- rast(f)
plot(preds)
# file with presence points
occurence <- system.file("/ex/bradypus.csv", package="predicts")
occ <- read.csv(occurence)[,-1]
# witholding a 20% sample for testing
fold <- folds(occ, k=5)
occtest <- occ[fold == 1, ]
occtrain <- occ[fold != 1, ]
# fit model
me <- MaxEnt(preds, occtrain)
# see the MaxEnt results in a browser:
# me
dir_copy(attr(me, "path"), here("me_bradypus"))
```
Results: [maxent.html](./data/me_bradypus/maxent.html)
```{r}
# plot showing importance of each variable
plot(me, main="me: Variable contribution")
# TODO: try categorical, not in preds
# # use "args"
# me2 <- MaxEnt(preds, occtrain, factors='biome', args=c("-J", "-P"))
#
# # plot showing importance of each variable
# plot(me2, main="me2: Variable contribution")
# response curves
d <- tibble()
for (v in names(preds)){ # v = names(preds)[2]
pr <- partialResponse(me, var=v)
d <- bind_rows(
d,
pr |>
rename(value = 1) |>
mutate(
var = v))
# plot(pr, type="l", las=1)
# TODO: lattice ggplot
}
g <- d |>
ggplot(aes(x = value, y = p)) +
geom_line() +
facet_wrap(
~var, scales = "free") +
theme_bw()
g
plotly::ggplotly(g)
# TODO: convert to function
# pr2 <- partialResponse2(me, var="bio1", var2 = "bio5")
# plot(pr2, type="l", las=1)
# predict to entire dataset
r <- predict(me, preds)
plot(r)
points(occ)
# with some options:
r <- predict(me, preds, args=c("outputformat=raw"))
plot(r)
points(occ)
#testing ----
# background sample
bg <- backgroundSample(preds, 1000)
#simplest way to use 'evaluate'
e1 <- pa_evaluate(me, p=occtest, a=bg, x=preds)
# alternative 1
# extract values
pvtest <- data.frame(extract(preds, occtest))
avtest <- data.frame(extract(preds, bg))
e2 <- pa_evaluate(me, p=pvtest, a=avtest)
# alternative 2
# predict to testing points
testp <- predict(me, pvtest)
head(testp)
testa <- predict(me, avtest)
e3 <- pa_evaluate(p=testp, a=testa)
e3
threshold(e3)
plot(e3, 'ROC')
```
### rwhale
```{r}
# get predictor variables
preds <- env
plot(preds)
# witholding a 20% sample for testing
occ <- obs |>
mutate(
lon = st_coordinates(geometry)[,1],
lat = st_coordinates(geometry)[,2]) |>
st_drop_geometry() |>
select(lon, lat)
fold <- folds(occ, k=5)
occtest <- occ[fold == 1, ]
occtrain <- occ[fold != 1, ]
# fit model
system.time({
me <- MaxEnt(preds, occtrain)
})
# Warning message:
# In .local(x, p, ...) :
# 3 (0.19%) of the presence points have NA predictor values
# see the MaxEnt results in a browser:
# see the MaxEnt results in a browser:
# me
dir_copy(attr(me, "path"), here("me_rwhale"))
```
Results: [maxent.html](./data/me_rwhale/maxent.html)
```{r}
# plot showing importance of each variable
plot(me, main="me: Variable contribution")
# TODO: try categorical, not in preds
# # use "args"
# me2 <- MaxEnt(preds, occtrain, factors='biome', args=c("-J", "-P"))
#
# # plot showing importance of each variable
# plot(me2, main="me2: Variable contribution")
# response curves
system.time({
d <- tibble()
for (v in names(preds)){ # v = names(preds)[2]
pr <- partialResponse(me, var=v)
d <- bind_rows(
d,
pr |>
rename(value = 1) |>
mutate(
var = v))
# plot(pr, type="l", las=1)
# TODO: lattice ggplot
}
g <- d |>
ggplot(aes(x = value, y = p)) +
geom_line() +
facet_wrap(
~var, scales = "free") +
theme_bw()
g
})
# plotly::ggplotly(g)
# TODO: convert to function
# pr2 <- partialResponse2(me, var="bio1", var2 = "bio5")
# plot(pr2, type="l", las=1)
# predict to entire dataset
system.time({
r <- predict(me, preds)
})
plot(r)
points(occ)
# with some options:
# system.time({
# r <- predict(me, preds, args=c("outputformat=raw"))
# })
# plot(r)
# points(occ)
plet(r, tiles = leaflet::providers$Esri.NatGeoWorldMap) |>
addCircleMarkers(
data = occ,
lng = ~lon,
lat = ~lat,
opacity = 0.3,
fillOpacity = 0.1,
radius = 2,
weight = 1)
```
## mdl: maxnet
```{r}
#| eval: false
librarian::shelf(
maxnet,
quiet = T)
system.time({
m <- maxnet(
p = d_env |> pull(presence),
data = d_env |> select(-presence, -cell) |> as.data.frame())
}) # present/absent:7,359/7,355: 50.149s
plot(m, type="cloglog")
predict(m, new)
env |> terra::add()
env
# 2160 * 4320 = 9331200, 5
d_env <- values(env, dataframe = T, na.rm=F)
# d_env <- d_env |>
# select(-pred)
dim(d_env) # 9,331,200 4
ncell(env) # 9,331,200
d_env_notna <- na.omit(d_env)
dim(d_env_notna) # 6,183,457
x <- d_env_notna
intersect(attr(x, "na.action"), attr(x, "row.names"))
class(attr(x, "row.names"))
p <- predict(m, d_env_notna, clamp = T, type = "logistic") #, clamp=T, type=c("link","exponential","cloglog","logistic"), ...)
length(p[,1]) # 6,183,457
p <- predict(m, raster::stack(env), clamp = F, type = "logistic") #, clamp=T,
env$pred <- NA
env$pred[attr(x, "row.names")] <- p[,1]
plot(env$pred)
setValues(env, p)
# why are these different lengths?
as.numeric(p)
ncell(env)
length(cells(env))
length(as.numeric(p))
plot(env$pred)
mod <- maxnet(p, data, maxnet.formula(p, data, classes="lq"))
plot(mod, "tmp6190_ann")
```
## vs Kernel Density Estimates (KDE)
* [Kernel density estimates for tidy and geospatial data in the eks package](https://cran.r-project.org/web/packages/eks/vignettes/tidysf_kde.html)
```{r}
librarian::shelf(
eks,
quiet = T)
```