-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVectorTech.v
180 lines (131 loc) · 4.74 KB
/
VectorTech.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
Require Import FOL.
Require Import Equations.Equations Equations.Prop.DepElim.
Require Import Lia.
Require Import Vector.
Section Vectors.
(* function that does the conjuction over all entries of a Boolean vector *)
Fixpoint andb_vec {n} (v : t bool n) :=
match v with
| nil _ => true
| cons _ b n w => andb b (andb_vec w)
end.
Fixpoint max_vec {n} (v : t nat n ) :=
match v with
| nil _ => 0
| cons _ k n w => PeanoNat.Nat.max k (max_vec w)
end.
Lemma help {X N} x a (v : t X N) :
In x (cons _ a _ v) -> x = a \/ In x v.
Proof.
intros H. inversion H;subst.
eapply EqDec.inj_right_pair in H3; subst.
- now left.
- eapply EqDec.inj_right_pair in H3; subst. now right.
Qed.
Lemma vec_true_entries {N} v :
andb_vec v = true -> forall b, @In _ b N v -> b = true.
Proof.
induction v.
- intros _ b H. inversion H.
- cbn. intros []%andb_prop b Hin.
apply help in Hin as [<-|].
assumption. now apply IHv.
Qed.
Lemma vec_max_entries {N} v :
forall B, max_vec v <= B -> forall n : nat, @In _ n N v -> n <= B.
Proof.
induction v.
- intros B _ n H. inversion H.
- cbn. intros B H m Hin.
apply help in Hin as [<-|].
now apply PeanoNat.Nat.max_lub_l in H.
apply IHv. now apply PeanoNat.Nat.max_lub_r in H. auto.
Qed.
(* produces a vector where the order of the values is fliped; *)
(* the 0-th entry of the vector is (sigma N) and the N-th is (sigma 0) *)
Fixpoint first_of {X} N (sigma : nat -> X) : t X (S N) :=
match N with
| O => cons _ (sigma 0) 0 (nil _)
| S n => cons _ (sigma N) _ (first_of n sigma)
end.
(* first_of flips the order of the elements we take away. So when we join
it again with the rest of the environment, we need to do another flip
during the joining. *)
Fixpoint join {X n} (v : t X n) (rho : nat -> X) :=
match v with
| nil _ => rho
| cons _ x n w => join w (x.:rho)
end.
Notation "v '∗' rho" := (join v rho) (at level 20).
(* now we define the fitting remaining part which we want to join *)
Definition rest_of {X} (N : nat) (sigma : nat -> X) := fun x => sigma (x + S N).
Lemma shift_rest_of {X : Type} N k (sigma : nat -> X) x :
rest_of (N + k) sigma x = rest_of N sigma (x + k).
Proof.
unfold rest_of. f_equal. rewrite <- plus_Sn_m.
pattern (S N + k). rewrite <- PeanoNat.Nat.add_comm.
now rewrite PeanoNat.Nat.add_assoc.
Qed.
Lemma vec_hdtl_eq {X n} (v : t X (S n)) :
v = Vector.cons X (hd v) n (tl v).
Proof.
pattern v. revert v; revert n. apply caseS. now cbn.
Qed.
Lemma vec_Onil_eq {X} (v : t X 0) : v = nil X.
Proof.
now refine (case0 (fun x => x = nil X) _ v ).
Qed.
Lemma vec_map_In {X Y N} (f : X -> Y) x (v : t X N) :
In x v -> In (f x) (map f v).
Proof.
intros H. induction H; cbn; now constructor.
Qed.
Lemma vec_join_after_N' {X N} (v : t X N ) :
forall rho sigma k, (forall x, rho x = sigma x) -> (v ∗ rho) (N + k) = sigma k.
Proof.
induction N. rewrite (vec_Onil_eq _). now cbn.
rewrite (vec_hdtl_eq _). intros rho sigma k Hext. cbn.
rewrite <- PeanoNat.Nat.add_succ_r.
change ( (tl v ∗ (hd v .: rho)) (N + S k)
= (fun x => match x with
| S y => sigma y
| _ => hd v end) (S k) ).
apply IHN. destruct x. now cbn. now rewrite <- Hext.
Qed.
Corollary vec_join_after_N {X N} (v : t X N ) :
forall rho k, (v ∗ rho) (N + k) = rho k.
Proof.
intros rho k. now apply vec_join_after_N'.
Qed.
Lemma vec_join_at_N {X N} (v : t X N ) : forall rho, (v ∗ rho) N = rho 0.
Proof.
intros rho. change ((v ∗ rho) (0 + N) = rho 0).
rewrite PeanoNat.Nat.add_comm. now refine (vec_join_after_N _ _ _).
Qed.
Lemma vec_join_ext {X N} (v : t X (S N) ) : forall rho sigma,
forall n, n <= N -> (v ∗ rho) n = (v ∗ sigma) n.
Proof.
revert v. induction N.
- intros v rho sigma n HN.
enough (n = 0) as ->.
rewrite (vec_hdtl_eq v). rewrite (vec_Onil_eq _).
all : now intuition.
- intros V rho sigma n HN. rewrite (vec_hdtl_eq _).
remember (tl V) as v; cbn.
enough (n = S N \/ n <= N) as [-> |].
now rewrite !vec_join_at_N. now apply (IHN v _ _).
lia.
Qed.
Lemma vec_join_before_N' {X N} :
forall (sigma rho : nat -> X) k, k <= N -> (first_of N sigma ∗ rho) k = sigma k.
Proof.
induction N; intros sigma rho k Hk. enough (k = 0) as ->. now cbn. lia.
enough (k = S N \/ k <= N) as [-> |]; cbn.
apply vec_join_at_N. now apply IHN. lia.
Qed.
Lemma vec_join_before_N {X N} :
forall (rho : nat -> X) k, k <= N -> (first_of N rho ∗ rho) k = rho k.
Proof.
intros. now apply vec_join_before_N'.
Qed.
End Vectors.