-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy path04-trees.html
1741 lines (1381 loc) · 49.7 KB
/
04-trees.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>CS 2501: 05-trees slide set</title>
<meta name="description" content="Slides for a Data Structures and Algorithms Course">
<meta name="author" content="Mark Floryan">
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<link rel="stylesheet" href="../slides/reveal.js/css/reveal.css">
<link rel="stylesheet" href="../slides/reveal.js/css/theme/white.css" id="theme">
<!-- <link rel="stylesheet" href="../slides/css/pdr.css">-->
<!-- Code syntax highlighting -->
<link rel="stylesheet" href="../slides/reveal.js/lib/css/zenburn.css">
<!-- Printing and PDF exports -->
<script>
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? '../slides/reveal.js/css/print/pdf.css' : '../slides/reveal.js/css/print/paper.css';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
<!--[if lt IE 9]>
<script src="../slides/reveal.js/lib/js/html5shiv.js"></script>
<![endif]-->
<!---->
<script type="text/javascript" src="../slides/js/dhtmlwindow.js"></script>
<script type="text/javascript" src="../slides/js/canvas.js"></script>
<script src="node_modules/mermaid/dist/mermaid.min.js"></script>
<script>
var config = {
startOnLoad:true,
theme:"neutral",
flowchart:{
useMaxWidth:false,
htmlLabels:true,
}
};
mermaid.initialize(config);
</script>
<link rel="stylesheet" href="../slides/css/dhtmlwindow.css" type="text/css">
</head>
<body onload="canvasinit()">
<div id="dhtmlwindowholder"><span style="display:none"></span></div>
<div class="reveal">
<!-- Any section element inside of this container is displayed as a slide -->
<div class="slides">
<section data-markdown><script type="text/template">
## CS2501
### Data Structures and Algorithms 1
<center><small>[Mark Floryan](http://www.cs.virginia.edu/~mrf8t) / [[email protected]](mailto:[email protected])</small></center>
<center><small>Repository: [github.com/markfloryan/dsa1](http://github.com/markfloryan/dsa1) / [↑](index.html) </small></center>
### Trees
</script></section>
<section data-markdown class="center"><script type="text/template">
### Contents
[Introduction](#/intro) <br />
[Aside: Recursion](#/rec) <br />
[Tree Traversals](#/trav) <br />
[Binary Search Trees](#/bst) <br />
[AVL Trees](#/avl) <br />
[Inheritance](#/inh) <br />
[Red-Black Trees](#/rbt) <br />
[Applications of Trees](#/app) <br />
</script></section>
<section>
<section id="intro" data-markdown class="center"><script type="text/template">
## Introduction
</script></section>
<section data-markdown><script type="text/template">
### Data Structures
- If we have a good list implementation, do we need any other data structures?
- For computing: ***no***
- We can compute everything with just lists (actually even less). The underlying machine memory can be thought of as a list
- For thinking: ***yes***
- Lists are a very limited way of thinking about problems
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
## List Limitations
<span class="diagram-data" style="display:none;">
graph LR
A[50]
A --> B[27]
B --> C[101]
C --> D[67]
</span><div class="diagram-display"></div>
- In a list, every element has direct relationships with only two others: the predecessor and the successor
- Access time: Θ(*n*)
- Goal: Θ(log *n*)
</script></section>
<section>
<h3><a href="http://commons.wikimedia.org/wiki/File:IndoEuropeanTree.svg">Complex Relationships: Language Tree</a></h2>
<img alt="language tree" class="stretch" src="images/05-trees/IndoEuropeanTree.svg" style="background-color:white">
</section>
<section data-markdown class="diagram-slide"><script type="text/template">
### List → Tree
- List: each element has relationships with up to 2 other elements
- Binary Tree: each element has relationships with up to ***3*** other elements
- A tree is a special case of a list
<span class="diagram-data" style="display:none;">
graph TD
A[50]
A --> B[12]
A --> C[99]
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown><script type="text/template">
### Tree Terms
- *Root*: node with no parent; there is only one root
- *Leaf*: a node with no children
- *Siblings*: two nodes with the same parent
- *Height* of a node: length of the ***longest*** path from that node to a leaf
- Thus, all leaves have height of zero
- *Height of a tree*: maximum depth of a node in that tree = height of the root
- *Depth* of a node: length of the path from the root to that node
</script></section>
<section data-markdown><script type="text/template">
### More Tree Terms
- *Path*: sequence of nodes *n*<sub>1</sub>, *n*<sub>2</sub>, ..., *n*<sub>*k*</sub> such that *n*<sub>*i*</sub> is parent of *n*<sub>*i*+1</sub> for 1 ≤ *i* ≤ *k*
- *Length*: number of edges in the path
- *Internal path length*: sum of the depths of all the nodes
</script></section>
<section>
<h2>Other Examples of Trees</h2>
<table class="transparent"><tr><td class="top" style="width:60%">
<ul><li>Files and folders on a computer</li>
<li>Compilers: parse tree<pre><code class="avrasm">a = (b+c) * d;</code></pre></li>
<li>Genealogy trees<ul>
<li>These become complicated with some complex family relationships</li></ul></li>
</ul>
</td>
</tr></table>
</section>
</h3></section>
<section>
<section id="rec" data-markdown class="center"><script type="text/template">
## Aside: Recursion
</script></section>
<section data-markdown class="center"><script type="text/template">
#### What is recursion?
- __Recursion__ is a very common programming technique in a which a method invokes itself to solve a problem. A solution thus, is defined as a function of a solution to a slightly smaller version of the problem.
- Why do we care? Trees use recursion ALL OF THE TIME. So we need to know it.
</script></section>
<section data-markdown class="center"><script type="text/template">
#### What is recursion?
- A __recursive solution__ to a problem contains:
- __Base Case__: How do you solve the smallest instance of the problem
- __Recursive Case__: Solve a small chunk of the problem manually and then invoke your method on a slightly smaller instance of the problem.
- You should be making progress towards your base case!
</script></section>
<section data-markdown><script type="text/template">
#### Example: Printing a list
- Here is a method that prints a list
<pre><code class="hljs" data-trim contenteditable>
public void printList(int[] list){
for(int i = 0; i < list.length; i++){
System.out.println(list[i] + " ");
}
}
</code></pre>
</script></section>
<section data-markdown><script type="text/template">
#### Example: Printing a list recursively
- Here is a method that prints a list __recursively__
<pre><code class="hljs" data-trim contenteditable>
public void printList(int[] list, int curIndex){
//Base case, if curIndex has run off end of list, do nothing
if(curIndex >= list.length) return;
//print one element and then recursively print the rest
System.out.println(list[curIndex] + " ");
printList(list, curIndex+1);
}
</code></pre>
</script></section>
<section data-markdown><script type="text/template">
#### Example: Printing a list recursively
- Notice we have to start curIndex at 0.
- Helper functions are very common
<pre><code class="hljs" data-trim contenteditable>
public void printList(int[] list){
printList(list, 0); //print starting at index 0
}
//private so nobody can invoke this method directly
private void printList(int[] list, int curIndex){
//Base case
if(curIndex >= list.length) return;
//print one element and then recursively print the rest
System.out.println(list[curIndex] + " ");
printList(list, curIndex+1);
}
</code></pre>
</script></section>
<section data-markdown><script type="text/template">
#### Another Example: Palindrome
- Test to see if a given string is a palindrome
- General approach, test first and last character only
- If they match AND
- Everything inside is also a palindrome, then true!
</script></section>
<section data-markdown><script type="text/template">
#### Another Example: Palindrome
- Test to see if a given string is a palindrome
<pre><code class="hljs" data-trim contenteditable>
public boolean isPalindrome(String s, int l, int r){
//base case
if(l > r) return true;
//if outside chars match and inside is palindrome, then return true
return (s.charAt(l) == s.charAt(r))
&& isPalindrom(s, l+1, r-1);
}
</code></pre>
</script></section>
<section data-markdown><script type="text/template">
#### Another Example: Palindrome
- Test to see if a given string is a palindrome
<pre><code class="hljs" data-trim contenteditable>
public boolean isPalindrome(String s){
return isPalindrome(s, 0, s.length-1);
}
private boolean isPalindrome(String s, int l, int r){
//base case
if(l > r) return true;
//if outside chars match and inside is palindrome, then return true
return (s.charAt(l) == s.charAt(r))
&& isPalindrom(s, l+1, r-1);
}
</code></pre>
</script></section>
<section data-markdown><script type="text/template">
#### Challenge: Towers of Hanoi
- A game that is old an famous:
![TOH](https://upload.wikimedia.org/wikipedia/commons/thumb/0/07/Tower_of_Hanoi.jpeg/300px-Tower_of_Hanoi.jpeg)
</script></section>
<section data-markdown><script type="text/template">
#### Challenge: Towers of Hanoi
![TOH](https://upload.wikimedia.org/wikipedia/commons/thumb/0/07/Tower_of_Hanoi.jpeg/300px-Tower_of_Hanoi.jpeg)
- Suppose you are given a method move(i, j) that moves one disc from peg i to peg j
- Write the following method in psuedocode:
<pre><code class="hljs" data-trim contenteditable>
//someone will start the method like this:
solveHanoi(12, 1, 3, 2);
solveHanoi(int numDiscs, int fromPeg, int toPeg, int auxPeg){
//Solution goes here
}
</code></pre>
</script></section>
</section>
<section>
<section id="trav" data-markdown class="center"><script type="text/template">
## Tree Traversals
</script></section>
<section data-markdown><script type="text/template">
#### Problem: Traversing a Tree
- If I ask you to print out a tree, not obvious what order to print things.
- With a list, the order is obvious.
- For a tree, we can use various types of __tree traversals__
- A __tree traversal__ is a strategy / order for visiting the nodes.
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
<span class="diagram-data" style="display:none;">
graph TD
/ --> A[\*]
/ --> B[*]
A --> C[+]
A --> D[-]
C --> 1
C --> 2
D --> 3
D --> 4
B --> 5
B --> 6
</span><div class="diagram-display"></div>
- Pre-order: `/ * 5 6 * + 1 2 - 3 4`
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
<span class="diagram-data" style="display:none;">
graph TD
/ --> A[\*]
/ --> B[*]
A --> C[+]
A --> D[-]
C --> 1
C --> 2
D --> 3
D --> 4
B --> 5
B --> 6
</span><div class="diagram-display"></div>
- In-order: `(5+6) / ((1+2)*(3-4))`
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
<span class="diagram-data" style="display:none;">
graph TD
/ --> A[\*]
/ --> B[*]
A --> C[+]
A --> D[-]
C --> 1
C --> 2
D --> 3
D --> 4
B --> 5
B --> 6
</span><div class="diagram-display"></div>
- Post-order: `5 6 * 1 2 + 3 4 - * /`
</script></section>
<section data-markdown><script type="text/template">
## Pre-order Traversal
- Pre-order: node first, then children (this is pseudo-code):
<pre><code class="hljs" data-trim contenteditable>
public class Tree{
private Node root;
public void printTree(){
printTree(root);
}
private void printTree(Node curNode) {
if(curNode == null) return;
System.out.println(curNode.value + " ");
printTree(curNode.left);
printTree(curNode.right);
}
}
</code></pre>
</script></section>
<section data-markdown><script type="text/template">
## In-order Traversal
- In-order: left node first, then self, then right node:
<pre><code class="hljs" data-trim contenteditable>
private void printTree(Node curNode) {
if(curNode == null) return;
printTree(curNode.left);
System.out.println(curNode.value + " ");
printTree(curNode.right);
}
</code></pre>
</script></section>
<section data-markdown><script type="text/template">
## Post-order Traversal
- Post-order: children first, then node
- This method counts the number of nodes
<pre><code class="hljs" data-trim contenteditable>
private void numNodes(Node root) {
if(root == null) return 0;
int sum = numNodes(root.left) + numNodes(root.right);
return sum+1;
}
</code></pre>
</script></section>
</section>
<section>
<section id="bst" data-markdown class="center"><script type="text/template">
## Binary Search Trees
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### Binary Trees
<pre><code class="hljs" data-trim contenteditable>
public class BinaryNode{
int value;
BinaryNode left;
BinaryNode right;
}
</code></pre>
<span class="diagram-data" style="display:none;">
graph TD
1 --> 2
1 --> 3
2 --> 4
2 --> 5
3 --> 6
3 --> A[ ]
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### Binary Trees
- In reality, any arrow not shown is a null pointer
<span class="diagram-data" style="display:none;">
graph TD
1 --> 2
1 --> 3
2 --> 4
2 --> 5
3 --> 6
3 --> A[ ]
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown><script type="text/template">
## Binary Search Trees (BST)
- Each node has a *key* value that can be compared
- Binary search tree property:
- For a given node, which we will call the *root*...
- Every node in left subtree has a key whose value is *less* than the root's key value, AND
- Every node in right subtree has a key whose value is *greater* than the root's key value
- We assume that duplicate values are not allowed
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST: Example
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST: Counter-Example
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 3
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown><script type="text/template">
## The difference
- Both binary trees and binary search trees have zero, one, or two children per node
- But a binary search tree is *sorted*
- However, most people, when they say "binary tree", really mean a "binary search tree"
- Note that we assume that we can *NOT* have duplicate elements in a BST
</script></section>
<section data-markdown><script type="text/template">
## BST: find
- Basic idea:
- Compare value to be found to key of the root of the tree
- If they are equal, then done
- If not equal, recurse depending on which half of tree the value should be in if it is in tree
- If you hit a `NULL` pointer, then you have "run off" the bottom of the tree, and the value is not in the tree
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST: Find Example
- Try to find(6)
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown><script type="text/template">
#### BST: Find
<pre><code class="hljs" data-trim contenteditable>
boolean find(int x, BSTNode curNode){
if(curNode == null) return false; //off end of tree
else if(x < curNode.value)
return find(x, curNode.left);
else if(x > curNode.value)
return find(x, curNode.right);
else return true; //found it!
}
</code></pre>
</script></section>
<section data-markdown><script type="text/template">
#### BST: Find
- How to do this if you are storing objects in Java?
- __Solution__: Use the compareTo() function
<pre><code class="hljs" data-trim contenteditable>
private boolean find(T data, BSTNode< T > curNode) {
if(curNode == null) return false;
else if (data.compareTo(curNode.data) < 0)
return find(data, curNode.left);
else if (data.compareTo(curNode.data) > 0)
return find(data, curNode.right);
else
return true;
}
</code></pre>
</script></section>
<section data-markdown><script type="text/template">
#### BST: Find
- Programmers using your tree don't know what curNode is.
- Helper function hides this.
<pre><code class="hljs" data-trim contenteditable>
public boolean find(T data){
return find(data, rootNode); //start at root of tree
}
private boolean find(T data, BSTNode< T > curNode) {
if(curNode == null) return false;
else if (data.compareTo(curNode.data) < 0)
return find(data, curNode.left);
else if (data.compareTo(curNode.data) > 0)
eturn find(data, curNode.right);
return true;
}
</code></pre>
</script></section>
<section data-markdown><script type="text/template">
#### BST: Insert
- Idea: Move down tree like in find to discover location
- Make and put the new node there
<pre><code class="hljs" data-trim contenteditable>
public void insert(T data) {
this.root = insert(data, root);
}
private BSTNode< T > insert(T data, BSTNode< T > curNode) {
if(curNode == null) return new BSTNode< T >(data);
else if (data.compareTo(curNode.data) < 0)
curNode.left = insert(data, curNode.left);
else if (data.compareTo(curNode.data) > 0)
curNode.right = insert(data, curNode.right);
else ; //duplicate, ignoring the insert
return curNode; //curNode still the root of this subtree
}
</code></pre>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST: findMax(), findMin()
- To find max element, traverse right forever
- similarly down left for findMin
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown><script type="text/template">
#### BST - remove
- Disrupts the tree structure
- Basic idea:
- Find node to be removed
- Three cases:
- Node has no children
- Node has one child
- Node has two children
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST Remove: remove(13)
- No children so just remove the node
- Make sure parent pointer now points to NULL
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST Remove: remove(13)
- No children so just remove the node
- Make sure parent pointer now points to NULL
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> A[ ]
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST Remove: remove(10)
- One child: Make parent pointer point to child
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> A[ ]
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST Remove: remove(10)
- One child: Make parent pointer point to child
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> A[ ]
5 -.-> 6
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST Remove: remove(10)
- One child: Make parent pointer point to child
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 6
2 --> 1
2 --> 4
6 --> B[ ]
6 --> A[ ]
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST Remove: remove(5)
- __STEP 1:__ Find successor
- Max val in left subtree (4) OR min in right subtree (6)
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST Remove: remove(5)
- __STEP 2:__ Replace deleting node with succesor
- Deleted node (5) overwritten with successor (6)
<span class="diagram-data" style="display:none;">
graph TD
A[6] --> 2
A[6] --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST Remove: remove(5)
- __STEP 3:__ Delete successor
- recursively call remove(6)
- successor will ALWAYS have 0 or 1 child. Why?
<span class="diagram-data" style="display:none;">
graph TD
A[6] --> 2
A[6] --> 10
2 --> 1
2 --> 4
10 --> B[ ]
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST Height
- __Worst Case Height__: Linear. Just a straight line
<span class="diagram-data" style="display:none;">
graph TD
9 --> 7
9 --> A[ ]
7 --> B[ ]
7 --> 4
4 --> C[1]
4 --> D[ ]
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### BST Height
- __Best Case Height__: log(n) where n is num nodes
- Why?
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### Perfect Binary Tree
- A perfect binary tree has all leaves at same depth.
- Every node has 0 or 2 children
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> 1
2 --> 4
10 --> 6
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
</section>
<section>
<section id="avl" data-markdown class="center"><script type="text/template">
## AVL Trees
</script></section>
<section data-markdown><script type="text/template">
## Animation Tools
- A good AVL tree animation tool is [here](http://www.qmatica.com/DataStructures/Trees/BST.html)
- A mirror that also contains the animation tool is [here](http://webdiis.unizar.es/asignaturas/EDA/AVLTree/avltree.html)
- We'll be using this website throughout this slide set
</script></section>
<section data-markdown><script type="text/template">
### AVL Trees
- Motivation: to ***guarantee*** Θ(log *n*) running time on find, insert, and remove
- Idea: Keep tree balanced after each operation
- Solution: AVL trees
- Named after the inventors, Adelson-Velskii and Landis
</script></section>
<section data-markdown><script type="text/template">
### AVL Tree Structure Property
For every node in the tree, the *height* of the left and right sub-trees differs at most by 1
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### AVL Tree
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> B[ ]
2 --> 4
10 --> A[ ]
10 --> 13
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### NOT an AVL Tree
<span class="diagram-data" style="display:none;">
graph TD
5 --> 2
5 --> 10
2 --> B[ ]
2 --> 4
10 --> A[ ]
10 --> 13
13 --> 11
13 --> C[ ]
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown><script type="text/template">
### AVL balance factor
- Each node of a BST holds:
- The data
- Left and right child references
- An AVL tree also holds a balance factor
- The height of the *right* subtree minus the height of the *left* subtree
- Can be computed on the fly, as well, but that's VERY slow
</script></section>
<section data-markdown><script type="text/template">
### AVL tree balance
- "Balanced" trees
- 0 means balanced
- 1 means the right subtree is one longer than the left subtree
- -1 means the left subtree is one longer than the right subtree
- "Unbalanced" trees
- A balance factor of -2 or 2
- We'll fix the tree
- Will we ever hit -3 or 3?
</script></section>
<section data-markdown class="diagram-slide"><script type="text/template">
#### AVL Tree with balance factors
<span class="diagram-data" style="display:none;">
graph TD
A["5 (0)"] --> B["2 (1)"]
A --> C["10 (1)"]
B --> D[ ]
B --> F["4 (0)"]
C --> E[ ]
C --> G["13 (0)"]
</span><div class="diagram-display"></div>
</script></section>
<section data-markdown><script type="text/template">
## AVL Trees: find, insert
- find: same as BST find
- insert: same as BST insert, except might need to "fix" the AVL tree after the insert (via rotations)
- Runtime analysis:
- Θ(*d*), where *d* is the depth of the node being found/inserted
- What is the maximum height of an n-node AVL tree?
</script></section>
<section data-markdown><script type="text/template">
## AVL tree operations
- Perform the operation (insert, delete)
- Move back up to the root, updating the balance factors
- Why only those nodes?
- Because those are the only ones who have had their subtrees altered
- Do tree rotations where the balance factors are 2 or -2
</script></section>
<section data-markdown><script type="text/template">
## How many times to "fix" the tree?
- Any single insert will only modify the balance factor by one
- So we fix the lowest off-balance nodes
- Then everything above it is then balanced
- This means that we will have to only look at the bottom two unbalanced nodes
</script></section>
<section data-markdown><script type="text/template">
## AVL insert
- Let *x* be the *deepest* node where imbalance occurs