forked from alteryx/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-11551][DOC][EXAMPLE] Replace example code in ml-features.md us…
…ing include_example Made new patch contaning only markdown examples moved to exmaple/folder. Ony three java code were not shfted since they were contaning compliation error ,these classes are 1)StandardScale 2)NormalizerExample 3)VectorIndexer Author: Xusen Yin <[email protected]> Author: somideshmukh <[email protected]> Closes apache#10002 from somideshmukh/SomilBranch1.33.
- Loading branch information
1 parent
3e7e05f
commit 78209b0
Showing
52 changed files
with
2,806 additions
and
1,058 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
68 changes: 68 additions & 0 deletions
68
examples/src/main/java/org/apache/spark/examples/ml/JavaBinarizerExample.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml; | ||
|
||
import org.apache.spark.SparkConf; | ||
import org.apache.spark.api.java.JavaSparkContext; | ||
import org.apache.spark.sql.SQLContext; | ||
|
||
// $example on$ | ||
import java.util.Arrays; | ||
|
||
import org.apache.spark.api.java.JavaRDD; | ||
import org.apache.spark.ml.feature.Binarizer; | ||
import org.apache.spark.sql.DataFrame; | ||
import org.apache.spark.sql.Row; | ||
import org.apache.spark.sql.RowFactory; | ||
import org.apache.spark.sql.types.DataTypes; | ||
import org.apache.spark.sql.types.Metadata; | ||
import org.apache.spark.sql.types.StructField; | ||
import org.apache.spark.sql.types.StructType; | ||
// $example off$ | ||
|
||
public class JavaBinarizerExample { | ||
public static void main(String[] args) { | ||
SparkConf conf = new SparkConf().setAppName("JavaBinarizerExample"); | ||
JavaSparkContext jsc = new JavaSparkContext(conf); | ||
SQLContext jsql = new SQLContext(jsc); | ||
|
||
// $example on$ | ||
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList( | ||
RowFactory.create(0, 0.1), | ||
RowFactory.create(1, 0.8), | ||
RowFactory.create(2, 0.2) | ||
)); | ||
StructType schema = new StructType(new StructField[]{ | ||
new StructField("label", DataTypes.DoubleType, false, Metadata.empty()), | ||
new StructField("feature", DataTypes.DoubleType, false, Metadata.empty()) | ||
}); | ||
DataFrame continuousDataFrame = jsql.createDataFrame(jrdd, schema); | ||
Binarizer binarizer = new Binarizer() | ||
.setInputCol("feature") | ||
.setOutputCol("binarized_feature") | ||
.setThreshold(0.5); | ||
DataFrame binarizedDataFrame = binarizer.transform(continuousDataFrame); | ||
DataFrame binarizedFeatures = binarizedDataFrame.select("binarized_feature"); | ||
for (Row r : binarizedFeatures.collect()) { | ||
Double binarized_value = r.getDouble(0); | ||
System.out.println(binarized_value); | ||
} | ||
// $example off$ | ||
jsc.stop(); | ||
} | ||
} |
70 changes: 70 additions & 0 deletions
70
examples/src/main/java/org/apache/spark/examples/ml/JavaBucketizerExample.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml; | ||
|
||
import org.apache.spark.SparkConf; | ||
import org.apache.spark.api.java.JavaSparkContext; | ||
import org.apache.spark.sql.SQLContext; | ||
|
||
// $example on$ | ||
import java.util.Arrays; | ||
|
||
import org.apache.spark.api.java.JavaRDD; | ||
import org.apache.spark.ml.feature.Bucketizer; | ||
import org.apache.spark.sql.DataFrame; | ||
import org.apache.spark.sql.Row; | ||
import org.apache.spark.sql.RowFactory; | ||
import org.apache.spark.sql.types.DataTypes; | ||
import org.apache.spark.sql.types.Metadata; | ||
import org.apache.spark.sql.types.StructField; | ||
import org.apache.spark.sql.types.StructType; | ||
// $example off$ | ||
|
||
public class JavaBucketizerExample { | ||
public static void main(String[] args) { | ||
SparkConf conf = new SparkConf().setAppName("JavaBucketizerExample"); | ||
JavaSparkContext jsc = new JavaSparkContext(conf); | ||
SQLContext jsql = new SQLContext(jsc); | ||
|
||
// $example on$ | ||
double[] splits = {Double.NEGATIVE_INFINITY, -0.5, 0.0, 0.5, Double.POSITIVE_INFINITY}; | ||
|
||
JavaRDD<Row> data = jsc.parallelize(Arrays.asList( | ||
RowFactory.create(-0.5), | ||
RowFactory.create(-0.3), | ||
RowFactory.create(0.0), | ||
RowFactory.create(0.2) | ||
)); | ||
StructType schema = new StructType(new StructField[]{ | ||
new StructField("features", DataTypes.DoubleType, false, Metadata.empty()) | ||
}); | ||
DataFrame dataFrame = jsql.createDataFrame(data, schema); | ||
|
||
Bucketizer bucketizer = new Bucketizer() | ||
.setInputCol("features") | ||
.setOutputCol("bucketedFeatures") | ||
.setSplits(splits); | ||
|
||
// Transform original data into its bucket index. | ||
DataFrame bucketedData = bucketizer.transform(dataFrame); | ||
// $example off$ | ||
jsc.stop(); | ||
} | ||
} | ||
|
||
|
65 changes: 65 additions & 0 deletions
65
examples/src/main/java/org/apache/spark/examples/ml/JavaDCTExample.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml; | ||
|
||
import org.apache.spark.SparkConf; | ||
import org.apache.spark.api.java.JavaSparkContext; | ||
import org.apache.spark.sql.SQLContext; | ||
|
||
// $example on$ | ||
import java.util.Arrays; | ||
|
||
import org.apache.spark.api.java.JavaRDD; | ||
import org.apache.spark.ml.feature.DCT; | ||
import org.apache.spark.mllib.linalg.VectorUDT; | ||
import org.apache.spark.mllib.linalg.Vectors; | ||
import org.apache.spark.sql.DataFrame; | ||
import org.apache.spark.sql.Row; | ||
import org.apache.spark.sql.RowFactory; | ||
import org.apache.spark.sql.types.Metadata; | ||
import org.apache.spark.sql.types.StructField; | ||
import org.apache.spark.sql.types.StructType; | ||
// $example off$ | ||
|
||
public class JavaDCTExample { | ||
public static void main(String[] args) { | ||
SparkConf conf = new SparkConf().setAppName("JavaDCTExample"); | ||
JavaSparkContext jsc = new JavaSparkContext(conf); | ||
SQLContext jsql = new SQLContext(jsc); | ||
|
||
// $example on$ | ||
JavaRDD<Row> data = jsc.parallelize(Arrays.asList( | ||
RowFactory.create(Vectors.dense(0.0, 1.0, -2.0, 3.0)), | ||
RowFactory.create(Vectors.dense(-1.0, 2.0, 4.0, -7.0)), | ||
RowFactory.create(Vectors.dense(14.0, -2.0, -5.0, 1.0)) | ||
)); | ||
StructType schema = new StructType(new StructField[]{ | ||
new StructField("features", new VectorUDT(), false, Metadata.empty()), | ||
}); | ||
DataFrame df = jsql.createDataFrame(data, schema); | ||
DCT dct = new DCT() | ||
.setInputCol("features") | ||
.setOutputCol("featuresDCT") | ||
.setInverse(false); | ||
DataFrame dctDf = dct.transform(df); | ||
dctDf.select("featuresDCT").show(3); | ||
// $example off$ | ||
jsc.stop(); | ||
} | ||
} | ||
|
75 changes: 75 additions & 0 deletions
75
examples/src/main/java/org/apache/spark/examples/ml/JavaElementwiseProductExample.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml; | ||
|
||
import org.apache.spark.SparkConf; | ||
import org.apache.spark.api.java.JavaSparkContext; | ||
import org.apache.spark.sql.SQLContext; | ||
|
||
// $example on$ | ||
import java.util.ArrayList; | ||
import java.util.Arrays; | ||
import java.util.List; | ||
|
||
import org.apache.spark.api.java.JavaRDD; | ||
import org.apache.spark.ml.feature.ElementwiseProduct; | ||
import org.apache.spark.mllib.linalg.Vector; | ||
import org.apache.spark.mllib.linalg.VectorUDT; | ||
import org.apache.spark.mllib.linalg.Vectors; | ||
import org.apache.spark.sql.DataFrame; | ||
import org.apache.spark.sql.Row; | ||
import org.apache.spark.sql.RowFactory; | ||
import org.apache.spark.sql.types.DataTypes; | ||
import org.apache.spark.sql.types.StructField; | ||
import org.apache.spark.sql.types.StructType; | ||
// $example off$ | ||
|
||
public class JavaElementwiseProductExample { | ||
public static void main(String[] args) { | ||
SparkConf conf = new SparkConf().setAppName("JavaElementwiseProductExample"); | ||
JavaSparkContext jsc = new JavaSparkContext(conf); | ||
SQLContext sqlContext = new SQLContext(jsc); | ||
|
||
// $example on$ | ||
// Create some vector data; also works for sparse vectors | ||
JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList( | ||
RowFactory.create("a", Vectors.dense(1.0, 2.0, 3.0)), | ||
RowFactory.create("b", Vectors.dense(4.0, 5.0, 6.0)) | ||
)); | ||
|
||
List<StructField> fields = new ArrayList<StructField>(2); | ||
fields.add(DataTypes.createStructField("id", DataTypes.StringType, false)); | ||
fields.add(DataTypes.createStructField("vector", new VectorUDT(), false)); | ||
|
||
StructType schema = DataTypes.createStructType(fields); | ||
|
||
DataFrame dataFrame = sqlContext.createDataFrame(jrdd, schema); | ||
|
||
Vector transformingVector = Vectors.dense(0.0, 1.0, 2.0); | ||
|
||
ElementwiseProduct transformer = new ElementwiseProduct() | ||
.setScalingVec(transformingVector) | ||
.setInputCol("vector") | ||
.setOutputCol("transformedVector"); | ||
|
||
// Batch transform the vectors to create new column: | ||
transformer.transform(dataFrame).show(); | ||
// $example off$ | ||
jsc.stop(); | ||
} | ||
} |
50 changes: 50 additions & 0 deletions
50
examples/src/main/java/org/apache/spark/examples/ml/JavaMinMaxScalerExample.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml; | ||
|
||
import org.apache.spark.SparkConf; | ||
import org.apache.spark.api.java.JavaSparkContext; | ||
import org.apache.spark.sql.SQLContext; | ||
|
||
// $example on$ | ||
import org.apache.spark.ml.feature.MinMaxScaler; | ||
import org.apache.spark.ml.feature.MinMaxScalerModel; | ||
import org.apache.spark.sql.DataFrame; | ||
// $example off$ | ||
|
||
public class JavaMinMaxScalerExample { | ||
public static void main(String[] args) { | ||
SparkConf conf = new SparkConf().setAppName("JaveMinMaxScalerExample"); | ||
JavaSparkContext jsc = new JavaSparkContext(conf); | ||
SQLContext jsql = new SQLContext(jsc); | ||
|
||
// $example on$ | ||
DataFrame dataFrame = jsql.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt"); | ||
MinMaxScaler scaler = new MinMaxScaler() | ||
.setInputCol("features") | ||
.setOutputCol("scaledFeatures"); | ||
|
||
// Compute summary statistics and generate MinMaxScalerModel | ||
MinMaxScalerModel scalerModel = scaler.fit(dataFrame); | ||
|
||
// rescale each feature to range [min, max]. | ||
DataFrame scaledData = scalerModel.transform(dataFrame); | ||
// $example off$ | ||
jsc.stop(); | ||
} | ||
} |
Oops, something went wrong.