forked from alteryx/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-11963][DOC] Add docs for QuantileDiscretizer
https://issues.apache.org/jira/browse/SPARK-11963 Author: Xusen Yin <[email protected]> Closes apache#9962 from yinxusen/SPARK-11963.
- Loading branch information
Showing
3 changed files
with
185 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
71 changes: 71 additions & 0 deletions
71
examples/src/main/java/org/apache/spark/examples/ml/JavaQuantileDiscretizerExample.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.examples.ml; | ||
|
||
import org.apache.spark.SparkConf; | ||
import org.apache.spark.api.java.JavaSparkContext; | ||
import org.apache.spark.sql.SQLContext; | ||
// $example on$ | ||
import java.util.Arrays; | ||
|
||
import org.apache.spark.api.java.JavaRDD; | ||
import org.apache.spark.ml.feature.QuantileDiscretizer; | ||
import org.apache.spark.sql.DataFrame; | ||
import org.apache.spark.sql.Row; | ||
import org.apache.spark.sql.RowFactory; | ||
import org.apache.spark.sql.types.DataTypes; | ||
import org.apache.spark.sql.types.Metadata; | ||
import org.apache.spark.sql.types.StructField; | ||
import org.apache.spark.sql.types.StructType; | ||
// $example off$ | ||
|
||
public class JavaQuantileDiscretizerExample { | ||
public static void main(String[] args) { | ||
SparkConf conf = new SparkConf().setAppName("JavaQuantileDiscretizerExample"); | ||
JavaSparkContext jsc = new JavaSparkContext(conf); | ||
SQLContext sqlContext = new SQLContext(jsc); | ||
|
||
// $example on$ | ||
JavaRDD<Row> jrdd = jsc.parallelize( | ||
Arrays.asList( | ||
RowFactory.create(0, 18.0), | ||
RowFactory.create(1, 19.0), | ||
RowFactory.create(2, 8.0), | ||
RowFactory.create(3, 5.0), | ||
RowFactory.create(4, 2.2) | ||
) | ||
); | ||
|
||
StructType schema = new StructType(new StructField[]{ | ||
new StructField("id", DataTypes.IntegerType, false, Metadata.empty()), | ||
new StructField("hour", DataTypes.DoubleType, false, Metadata.empty()) | ||
}); | ||
|
||
DataFrame df = sqlContext.createDataFrame(jrdd, schema); | ||
|
||
QuantileDiscretizer discretizer = new QuantileDiscretizer() | ||
.setInputCol("hour") | ||
.setOutputCol("result") | ||
.setNumBuckets(3); | ||
|
||
DataFrame result = discretizer.fit(df).transform(df); | ||
result.show(); | ||
// $example off$ | ||
jsc.stop(); | ||
} | ||
} |
49 changes: 49 additions & 0 deletions
49
examples/src/main/scala/org/apache/spark/examples/ml/QuantileDiscretizerExample.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
// scalastyle:off println | ||
package org.apache.spark.examples.ml | ||
|
||
// $example on$ | ||
import org.apache.spark.ml.feature.QuantileDiscretizer | ||
// $example off$ | ||
import org.apache.spark.sql.SQLContext | ||
import org.apache.spark.{SparkConf, SparkContext} | ||
|
||
object QuantileDiscretizerExample { | ||
def main(args: Array[String]) { | ||
val conf = new SparkConf().setAppName("QuantileDiscretizerExample") | ||
val sc = new SparkContext(conf) | ||
val sqlContext = new SQLContext(sc) | ||
import sqlContext.implicits._ | ||
|
||
// $example on$ | ||
val data = Array((0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, 2.2)) | ||
val df = sc.parallelize(data).toDF("id", "hour") | ||
|
||
val discretizer = new QuantileDiscretizer() | ||
.setInputCol("hour") | ||
.setOutputCol("result") | ||
.setNumBuckets(3) | ||
|
||
val result = discretizer.fit(df).transform(df) | ||
result.show() | ||
// $example off$ | ||
sc.stop() | ||
} | ||
} | ||
// scalastyle:on println |