-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathearly_stopping.py
66 lines (60 loc) · 2.5 KB
/
early_stopping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import torch
import random
import os
SEED =0
torch.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
random.seed(SEED)
os.environ['PYTHONHASHSEED'] = str(SEED)
class EarlyStopping():
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, patience=7, verbose=False, delta=0, path='checkpoint.pt', trace_func=print):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
path (str): Path for the checkpoint to be saved to.
Default: 'checkpoint.pt'
trace_func (function): trace print function.
Default: print
"""
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.best_reconstr_score =None
self.early_stop = False
self.acc_score_max = -np.Inf
self.delta = delta
self.path = path
self.trace_func = trace_func
def __call__(self, acc_score, reconst_score, model):
score = acc_score
if self.best_score is None:
self.best_score = score
self.best_reconstr_score =reconst_score
self.save_checkpoint(acc_score, model)
elif score < self.best_score + self.delta:
self.counter += 1
self.trace_func(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.best_reconstr_score =reconst_score
self.save_checkpoint(acc_score, model)
self.counter = 0
def save_checkpoint(self, acc_score, model):
'''Saves model when validation loss decrease.'''
if self.verbose:
self.trace_func(f'Accuracy score inscreased ({self.acc_score_max:.6f} --> {acc_score:.6f}). Saving model ...')
torch.save(model.state_dict(), f'models/checkpoint_{acc_score:.6f}.pt')
self.acc_score_max = acc_score