-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlibdai.py
29 lines (20 loc) · 1.29 KB
/
libdai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import os
import subprocess
from utils import json_load
PATH_CPP = os.path.expanduser('~/Programs/libdai/examples/spin_glass')
def get_filename(topology, n, A, B, K, f, c, potentials_type, M, MAP_solver):
""" Compute libdai output filename string from model and inference parameters """
text_size = '%dx%d' % (A, B) if topology == 'grid' else '%d' % (n)
return 'data/%s_%s_K%d_f%g_c%g_%s_M%d_%s' % (topology, text_size, K, f, c, potentials_type, M, MAP_solver)
def load_libdai_results(topology, n, A, B, K, f, c, potentials_type, M, MAP_solver):
""" Load libdai output in JSON format for given model and inference parameters """
filename = get_filename(topology, n, A, B, K, f, c, potentials_type, M, MAP_solver)
data_json = json_load(filename + '.json')
return data_json
def run_libdai(topology, n, A, B, K, f, c, potentials_type, M, MAP_solver):
""" Run libdai on model with specified parameters, using specified MAP solver """
path_stdout = get_filename(topology, n, A, B, K, f, c, potentials_type, M, MAP_solver) + '.json'
cmd = [PATH_CPP, topology, str(n), str(A), str(K), str(f), str(c), potentials_type, str(M), MAP_solver, str(0)]
with open(path_stdout, 'w') as stdout:
p = subprocess.Popen(cmd, stdout=stdout)
p.wait()