-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_ddp.py
157 lines (130 loc) · 5.2 KB
/
train_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import argparse
import torch
import torch.optim as optim
from tqdm import tqdm
import torch.nn.functional as F
import torch.nn as nn
from time import time_ns
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
from densenet import densenet121
from dataset import load_dataset
from state import save_checkpoint, load_checkpoint
def train(model, optimizer, train_loader):
model.train()
for (x, y) in train_loader:
x = x.cuda(non_blocking=True)
y = y.cuda(non_blocking=True)
optimizer.zero_grad()
out = model(x)
out = F.log_softmax(out, dim=1)
loss = F.nll_loss(out, y)
loss.backward()
optimizer.step()
def test(model, val_loader):
model.eval()
correct = 0.
with tqdm(total=len(val_loader.dataset)) as progress_bar:
with torch.no_grad():
for (x, y) in val_loader:
x = x.cuda(non_blocking=True)
y = y.cuda(non_blocking=True)
out = model(x)
pred = F.log_softmax(out, dim=1).max(1)[1]
correct += pred.eq(y).cpu().sum().item()
progress_bar.update(x.size(0))
accuracy = (100. * correct) / len(val_loader.dataset)
return accuracy
def worker(device_id, args):
rank_id = args.nr * args.gpus + device_id
dist.init_process_group(
backend='nccl',
init_method='env://',
world_size=args.world_size,
rank=rank_id
)
torch.cuda.set_device(device_id)
train_set, val_set = load_dataset(args.dataset, args.dataroot)
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_set,
num_replicas=args.world_size,
rank=rank_id,
shuffle=True
)
train_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=args.batch_size,
shuffle=False, num_workers=3, pin_memory=True, sampler=train_sampler)
val_loader = torch.utils.data.DataLoader(dataset=val_set, batch_size=args.batch_size, shuffle=False, num_workers=2, pin_memory=True)
model = densenet121(pretrained=True, num_classes=args.num_classes, memory_efficient=True).cuda(device_id)
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, nesterov=True)
model = nn.parallel.DistributedDataParallel(model, device_ids=[device_id])
state = load_checkpoint(args.cp_file, device_id, model, optimizer)
cudnn.benchmark = True
start_epoch = state.epoch + 1
for epoch in range(start_epoch, args.max_epochs):
t0 = time_ns()
train(model, optimizer, train_loader)
t1 = time_ns()
delta = (t1 - t0) / (10 ** 9)
print(f"Device {device_id} - Train time: {delta} sec")
if device_id == 0:
accuracy = test(model, val_loader)
print(f"Accuracy: {accuracy}%")
if epoch in [int(args.max_epochs * 0.5), int(args.max_epochs * 0.75)]:
optimizer.param_groups[0]['lr'] /= 10.
if epoch % args.save_interval == 0 and device_id == 0:
save_checkpoint(state, args.cp_file)
state.epoch = epoch
if __name__ == '__main__':
parser = argparse.ArgumentParser('DDP training')
parser.add_argument('--dataset',
help='dataset',
type=str,
default='CIFAR10')
parser.add_argument('--dataroot',
help='dataroot',
type=str,
default='./data')
parser.add_argument('--batch_size',
help='total batch size',
type=int,
default=64)
parser.add_argument('--max_epochs',
help='maximum number of training epoches.',
type=int,
default=200)
parser.add_argument('--save_interval',
help='save interval in epochs',
type=int,
default=10)
parser.add_argument('--lr',
help='lr.',
type=float,
default=0.1)
parser.add_argument('--num_classes',
help='number of classes.',
type=int,
default=10)
parser.add_argument('--cp_file',
help='checkpoint file',
type=str,
default='./checkpoints/CIFAR10.pt')
parser.add_argument('-n', '--nodes',
default=1,
type=int,
metavar='N')
parser.add_argument('-g', '--gpus',
default=2,
type=int,
help='number of gpus per node')
parser.add_argument('-nr', '--nr',
default=0,
type=int,
help='ranking within the nodes')
args = parser.parse_args()
args.world_size = args.gpus * args.nodes
args.batch_size = args.batch_size // args.gpus
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '8080'
mp.spawn(worker, nprocs=args.gpus, args=(args,))