-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdlv3_cityscapes_finetune_flow.py
127 lines (109 loc) · 3.9 KB
/
dlv3_cityscapes_finetune_flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import torch
import argparse
from utils import Logger
from data import get_dataset, JitterRandomCrop, RandomHorizontalFlip, AVAILABLE_DATASETS
import torchvision.transforms as tf
from models import DeepWV3PlusTH, DenseFlow
from experiments import SemsegFlowNegativesTrafficExperiment
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser('Semseg training')
parser.add_argument('--dataroot',
help='dataroot',
type=str,
default='.')
parser.add_argument('--dataset',
help='dataset',
type=str,
default='cityscapes',
choices=AVAILABLE_DATASETS)
parser.add_argument('--batch_size',
help='number of images in a mini-batch.',
type=int,
default=16)
parser.add_argument('--num_classes',
help='num classes of segmentator.',
type=int,
default=19)
parser.add_argument('--epochs',
help='maximum number of training epoches.',
type=int,
default=10)
parser.add_argument('--lr',
help='initial learning rate.',
type=float,
default=1e-6)
parser.add_argument('--lr_min',
help='min learning rate.',
type=float,
default=1e-6)
parser.add_argument('--exp_name',
help='experiment name',
type=str,
required=True)
parser.add_argument('--beta',
help='loss beta',
type=float,
default=0.01)
parser.add_argument('--flow_state',
help='flow state',
type=str)
args = parser.parse_args()
class Args:
def __init__(self):
self.last_block_pooling = 0
def main(args):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
exp_dir = f"./logs/{args.dataset}/{args.exp_name}"
if os.path.exists(exp_dir):
raise Exception('Directory exists!')
os.makedirs(exp_dir, exist_ok=True)
os.makedirs(f"{exp_dir}/imgs", exist_ok=True)
CROP_SIZE = 512
logger = Logger(f"{exp_dir}/log.txt")
logger.log(str(args))
train_transforms = {
'image': [
tf.ToTensor(),
],
'target': [
tf.ToTensor(),
],
'joint': [
JitterRandomCrop(size=CROP_SIZE, scale=(0.5, 2), ignore_id=args.num_classes, input_mean=(73, 83, 72)),
# city mean
RandomHorizontalFlip()
]
}
val_transforms = {
'image': [
tf.ToTensor(),
],
'target': [
tf.ToTensor(),
],
'joint': None
}
loaders = get_dataset(args.dataset)(args.dataroot, args.batch_size, train_transforms, val_transforms)
mask_loader = None
model = DeepWV3PlusTH(num_classes=args.num_classes).to(device)
model.load_pretrained_weights_cv0()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.9, 0.999), eps=1e-7)
flow = DenseFlow(checkpointing=True).to(device)
if args.flow_state:
flow.load_state_dict(torch.load(args.flow_state)['model'])
flow_optim = torch.optim.Adamax(flow.parameters(), lr=0.00001, betas=(0.9, 0.999), eps=1e-7)
else:
print('WARNING: Flow is randomly initialized!!!!')
flow_optim = torch.optim.Adamax(flow.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-7)
if device == 'cuda':
torch.backends.cudnn.benchmark = True
experiment = SemsegFlowNegativesTrafficExperiment(
model, optimizer, loaders, args.epochs, logger, device, f"{exp_dir}/checkpoint.pt", args, flow, flow_optim,
f"{exp_dir}/imgs", mask_loader
)
experiment.start()
logger.close()
if __name__ == '__main__':
main(args)