-
Notifications
You must be signed in to change notification settings - Fork 874
/
Copy pathchempot_diagram.py
730 lines (602 loc) · 28.3 KB
/
chempot_diagram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
"""
This module implements the construction and plotting of chemical potential diagrams
from a list of entries within a chemical system containing 2 or more elements. The
chemical potential diagram is the mathematical dual to the traditional compositional
phase diagram.
For more information, please cite/reference the paper below:
Todd, P. K., McDermott, M. J., Rom, C. L., Corrao, A. A., Denney, J. J., Dwaraknath,
S. S., Khalifah, P. G., Persson, K. A., & Neilson, J. R. (2021). Selectivity in
Yttrium Manganese Oxide Synthesis via Local Chemical Potentials in Hyperdimensional
Phase Space. Journal of the American Chemical Society, 143(37), 15185-15194.
https://doi.org/10.1021/jacs.1c06229
Please also consider referencing the original 1999 paper by H. Yokokawa,
who outlined many of its possible uses:
Yokokawa, H. "Generalized chemical potential diagram and its applications to
chemical reactions at interfaces between dissimilar materials." JPE 20,
258 (1999). https://doi.org/10.1361/105497199770335794
"""
from __future__ import annotations
import json
import os
import warnings
from functools import lru_cache
from itertools import groupby
from typing import TYPE_CHECKING
import numpy as np
import plotly.express as px
from monty.json import MSONable
from plotly.graph_objects import Figure, Mesh3d, Scatter, Scatter3d
from scipy.spatial import ConvexHull, HalfspaceIntersection
from pymatgen.analysis.phase_diagram import PDEntry, PhaseDiagram
from pymatgen.core.composition import Composition, Element
from pymatgen.util.coord import Simplex
from pymatgen.util.due import Doi, due
from pymatgen.util.string import htmlify
if TYPE_CHECKING:
from pymatgen.entries.computed_entries import ComputedEntry
with open(f"{os.path.dirname(__file__)}/../util/plotly_chempot_layouts.json") as file:
plotly_layouts = json.load(file)
@due.dcite(
Doi("10.1021/jacs.1c06229"),
description="Chemical potential diagram",
path="pymatgen.analysis.chempot_diagram.ChemicalPotentialDiagram",
)
class ChemicalPotentialDiagram(MSONable):
"""
The chemical potential diagram is the mathematical dual to the compositional
phase diagram. To create the diagram, convex minimization is
performed in energy (E) vs. chemical potential (μ) space by taking the lower convex
envelope of hyperplanes. Accordingly, "points" on the compositional phase diagram
become N-dimensional convex polytopes (domains) in chemical potential space.
For more information on this specific implementation of the algorithm,
please cite/reference the paper below:
Todd, P. K., McDermott, M. J., Rom, C. L., Corrao, A. A., Denney, J. J., Dwaraknath,
S. S., Khalifah, P. G., Persson, K. A., & Neilson, J. R. (2021). Selectivity in
Yttrium Manganese Oxide Synthesis via Local Chemical Potentials in Hyperdimensional
Phase Space. Journal of the American Chemical Society, 143(37), 15185-15194.
https://doi.org/10.1021/jacs.1c06229
"""
def __init__(
self,
entries: list[PDEntry],
limits: dict[Element, tuple[float, float]] | None = None,
default_min_limit: float = -50.0,
formal_chempots: bool = True,
) -> None:
"""
Args:
entries (list[PDEntry]): PDEntry-like objects containing a composition and
energy. Must contain elemental references and be suitable for typical
phase diagram construction. Entries must be within a chemical system
of with 2+ elements.
limits (dict[Element, float] | None): Bounds of elemental chemical potentials (min, max),
which are used to construct the border hyperplanes used in the HalfSpaceIntersection
algorithm; these constrain the space over which the domains are calculated and also
determine the size of the plotted diagram. Any elemental limits not specified are
covered in the default_min_limit argument. e.g. {Element("Li"): [-12.0, 0.0], ...}
default_min_limit (float): Default minimum chemical potential limit (i.e.,
lower bound) for unspecified elements within the "limits" argument.
formal_chempots (bool): Whether to plot the formal ('reference') chemical potentials
(i.e. μ_X - μ_X^0) or the absolute DFT reference energies (i.e. μ_X(DFT)).
Default is True (i.e. plot formal chemical potentials).
"""
entries = sorted(entries, key=lambda e: e.composition.reduced_composition)
_min_entries, _el_refs = self._get_min_entries_and_el_refs(entries)
if formal_chempots:
# renormalize entry energies to be relative to the elemental references
renormalized_entries = []
for entry in entries:
comp_dict = entry.composition.as_dict()
renormalization_energy = sum(comp_dict[el] * _el_refs[Element(el)].energy_per_atom for el in comp_dict)
renormalized_entries.append(_renormalize_entry(entry, renormalization_energy / sum(comp_dict.values())))
entries = renormalized_entries
self.entries = sorted(entries, key=lambda e: e.composition.reduced_composition)
self.limits = limits
self.default_min_limit = default_min_limit
self.elements = sorted({els for ent in self.entries for els in ent.elements})
self.dim = len(self.elements)
self.formal_chempots = formal_chempots
self._min_entries, self._el_refs = self._get_min_entries_and_el_refs(self.entries)
self._entry_dict = {ent.reduced_formula: ent for ent in self._min_entries}
self._border_hyperplanes = self._get_border_hyperplanes()
self._hyperplanes, self._hyperplane_entries = self._get_hyperplanes_and_entries()
if self.dim < 2:
raise ValueError("ChemicalPotentialDiagram currently requires phase diagrams with 2 or more elements!")
if len(self.el_refs) != self.dim:
missing = set(self.elements) - set(self.el_refs)
raise ValueError(f"There are no entries for the terminal elements: {missing}")
def get_plot(
self,
elements: list[Element | str] | None = None,
label_stable: bool | None = True,
formulas_to_draw: list[str] | None = None,
draw_formula_meshes: bool | None = True,
draw_formula_lines: bool | None = True,
formula_colors: list[str] = px.colors.qualitative.Dark2,
element_padding: float | None = 1.0,
) -> Figure:
"""
Plot the 2-dimensional or 3-dimensional chemical potential diagram using an
interactive Plotly interface.
Elemental axes can be specified; if none provided, will automatically default
to first 2-3 elements within the "elements" attribute.
In 3D, this method also allows for plotting of lower-dimensional "slices" of
hyperdimensional polytopes (e.g., the LiMnO2 domain within a Y-Mn-O diagram).
This allows for visualization of some of the phase boundaries that can only
be seen fully in high dimensional space; see the "formulas_to_draw" argument.
Args:
elements: list of elements to use as axes in the diagram. If None,
automatically defaults to the first 2 or elements within the
object's "elements" attribute.
label_stable: whether to label stable phases by their reduced
formulas. Defaults to True.
formulas_to_draw: for 3-dimensional diagrams, an optional list of
formulas to plot on the diagram; if these are from a different
chemical system a 3-d polyhedron "slice" will be plotted. Defaults to None.
draw_formula_meshes: whether to draw a colored mesh for the
optionally specified formulas_to_draw. Defaults to True.
draw_formula_lines: whether to draw bounding lines for the
optionally specified formulas_to_draw. Defaults to True.
formula_colors: a list of colors to use in the plotting of the optionally
specified formulas_to-draw. Defaults to the Plotly Dark2 color scheme.
element_padding: if provided, automatically adjusts chemical potential axis
limits of the plot such that elemental domains have the specified padding
(in eV/atom), helping provide visual clarity. Defaults to 1.0.
Returns:
plotly.graph_objects.Figure
"""
if elements:
elems = [Element(str(e)) for e in elements]
else:
elems = self.elements.copy()
if self.dim > 3:
elems = elems[:3] # default to first three elements
if len(elems) == 2 and self.dim == 2:
fig = self._get_2d_plot(
elements=elems,
label_stable=label_stable,
element_padding=element_padding,
)
elif len(elems) == 2 and self.dim > 2:
entries = [e for e in self.entries if set(e.elements).issubset(elems)]
cpd = ChemicalPotentialDiagram(
entries=entries,
limits=self.limits,
default_min_limit=self.default_min_limit,
formal_chempots=self.formal_chempots,
)
fig = cpd.get_plot(elements=elems, label_stable=label_stable) # type: ignore[arg-type]
else:
fig = self._get_3d_plot(
elements=elems,
label_stable=label_stable,
formulas_to_draw=formulas_to_draw,
draw_formula_meshes=draw_formula_meshes,
draw_formula_lines=draw_formula_lines,
formula_colors=formula_colors,
element_padding=element_padding,
)
return fig
def _get_domains(self) -> dict[str, np.ndarray]:
"""Get a dictionary of domains as {formula: np.ndarray}."""
hyperplanes = self._hyperplanes
border_hyperplanes = self._border_hyperplanes
entries = self._hyperplane_entries
hs_hyperplanes = np.vstack([hyperplanes, border_hyperplanes])
interior_point = np.min(self.lims, axis=1) + 1e-1
hs_int = HalfspaceIntersection(hs_hyperplanes, interior_point)
domains: dict[str, list] = {entry.reduced_formula: [] for entry in entries}
for intersection, facet in zip(hs_int.intersections, hs_int.dual_facets, strict=True):
for v in facet:
if v < len(entries):
this_entry = entries[v]
formula = this_entry.reduced_formula
domains[formula].append(intersection)
return {k: np.array(v) for k, v in domains.items() if v}
def _get_border_hyperplanes(self) -> np.ndarray:
"""Get an array of the bounding hyperplanes given by elemental limits."""
border_hyperplanes = np.array([[0] * (self.dim + 1)] * (2 * self.dim))
for idx, limit in enumerate(self.lims):
border_hyperplanes[2 * idx, idx] = -1
border_hyperplanes[2 * idx, -1] = limit[0]
border_hyperplanes[(2 * idx) + 1, idx] = 1
border_hyperplanes[(2 * idx) + 1, -1] = limit[1]
return border_hyperplanes
def _get_hyperplanes_and_entries(self) -> tuple[np.ndarray, list[PDEntry]]:
"""Get both the array of hyperplanes, as well as a list of the minimum
entries.
"""
data = np.array(
[
[entry.composition.get_atomic_fraction(el) for el in self.elements] + [entry.energy_per_atom]
for entry in self._min_entries
]
)
vec = [self.el_refs[el].energy_per_atom for el in self.elements] + [-1]
form_e = -np.dot(data, vec)
inds = np.where(form_e < -PhaseDiagram.formation_energy_tol)[0].tolist()
inds.extend([self._min_entries.index(el) for el in self.el_refs.values()])
hyperplanes = data[inds]
hyperplanes[:, -1] *= -1
hyperplane_entries = [self._min_entries[idx] for idx in inds]
return hyperplanes, hyperplane_entries
def _get_2d_plot(
self,
elements: list[Element],
label_stable: bool | None,
element_padding: float | None,
) -> Figure:
"""Get a Plotly figure for a 2-dimensional chemical potential diagram."""
domains = self.domains.copy()
elem_indices = [self.elements.index(e) for e in elements]
annotations = []
draw_domains = {}
if element_padding is not None and element_padding > 0:
new_lims = self._get_new_limits_from_padding(domains, elem_indices, element_padding, self.default_min_limit)
else:
new_lims = []
for formula, pts in domains.items():
formula_elems = set(Composition(formula).elements)
if not formula_elems.issubset(elements):
continue
pts_2d = np.array(pts[:, elem_indices])
if element_padding is not None and element_padding > 0:
for idx, new_lim in enumerate(new_lims):
col = pts_2d[:, idx]
pts_2d[:, idx] = np.where(np.isclose(col, self.default_min_limit), new_lim, col)
entry = self.entry_dict[formula]
anno_formula = formula
if hasattr(entry, "original_entry"):
anno_formula = entry.original_entry.reduced_formula
center = pts_2d.mean(axis=0)
normal = get_2d_orthonormal_vector(pts_2d)
ann_loc = center + 0.25 * normal # offset annotation location by arb. amount
annotation = self._get_annotation(ann_loc, anno_formula)
annotations.append(annotation)
draw_domains[formula] = pts_2d
layout = plotly_layouts["default_layout_2d"].copy()
layout |= self._get_axis_layout_dict(elements)
if label_stable:
layout["annotations"] = annotations
data = self._get_2d_domain_lines(draw_domains)
return Figure(data, layout)
def _get_3d_plot(
self,
elements: list[Element],
label_stable: bool | None,
formulas_to_draw: list[str] | None,
draw_formula_meshes: bool | None,
draw_formula_lines: bool | None,
formula_colors: list[str] | None,
element_padding: float | None,
) -> Figure:
"""Get a Plotly figure for a 3-dimensional chemical potential diagram."""
if not formulas_to_draw:
formulas_to_draw = []
elem_indices = [self.elements.index(e) for e in elements]
domains = self.domains.copy()
domain_simplexes: dict[str, list[Simplex] | None] = {}
draw_domains: dict[str, np.ndarray] = {}
draw_comps = [Composition(formula).reduced_composition for formula in formulas_to_draw]
annotations = []
if element_padding and element_padding > 0:
new_lims = self._get_new_limits_from_padding(domains, elem_indices, element_padding, self.default_min_limit)
else:
new_lims = []
for formula, pts in domains.items():
entry = self.entry_dict[formula]
pts_3d = np.array(pts[:, elem_indices])
if element_padding and element_padding > 0:
for idx, new_lim in enumerate(new_lims):
col = pts_3d[:, idx]
pts_3d[:, idx] = np.where(np.isclose(col, self.default_min_limit), new_lim, col)
contains_target_elems = set(entry.elements).issubset(elements)
if formulas_to_draw and entry.composition.reduced_composition in draw_comps:
domain_simplexes[formula] = None
draw_domains[formula] = pts_3d
if contains_target_elems:
domains[formula] = pts_3d
else:
continue
if not contains_target_elems:
domain_simplexes[formula] = None
continue
simplexes, ann_loc = self._get_3d_domain_simplexes_and_ann_loc(pts_3d)
anno_formula = formula
if hasattr(entry, "original_entry"):
anno_formula = entry.original_entry.reduced_formula
annotation = self._get_annotation(ann_loc, anno_formula)
annotations.append(annotation)
domain_simplexes[formula] = simplexes
layout = plotly_layouts["default_layout_3d"].copy()
layout["scene"] |= self._get_axis_layout_dict(elements)
layout["scene"]["annotations"] = None
if label_stable:
layout["scene"]["annotations"] = annotations
layout["scene_camera"] = {
"eye": {"x": 5, "y": 5, "z": 5}, # zoomed out
"projection": {"type": "orthographic"},
"center": {"x": 0, "y": 0, "z": 0},
}
data = self._get_3d_domain_lines(domain_simplexes)
if formulas_to_draw:
for formula in formulas_to_draw:
if formula not in domain_simplexes:
warnings.warn(f"Specified formula to draw, {formula}, not found!")
if draw_formula_lines:
data.extend(self._get_3d_formula_lines(draw_domains, formula_colors))
if draw_formula_meshes:
data.extend(self._get_3d_formula_meshes(draw_domains, formula_colors))
return Figure(data, layout)
@staticmethod
def _get_new_limits_from_padding(
domains: dict[str, np.ndarray],
elem_indices: list[int],
element_padding: float,
default_min_limit: float,
) -> list[float]:
"""Get new minimum limits for each element by subtracting specified padding
from the minimum for each axis found in any of the domains.
"""
all_pts = np.vstack(list(domains.values()))
new_lims = []
for el in elem_indices:
pts = all_pts[:, el]
new_lim = pts[~np.isclose(pts, default_min_limit)].min() - element_padding
new_lims.append(new_lim)
return new_lims
@staticmethod
def _get_2d_domain_lines(draw_domains) -> list[Scatter]:
"""Get a list of Scatter objects tracing the domain lines on a
2-dimensional chemical potential diagram.
"""
x, y = [], []
for pts in draw_domains.values():
x.extend([*pts[:, 0].tolist(), None])
y.extend([*pts[:, 1].tolist(), None])
return [
Scatter(
x=x,
y=y,
mode="lines+markers",
line={"color": "black", "width": 3},
showlegend=False,
)
]
@staticmethod
def _get_3d_domain_lines(domains: dict[str, list[Simplex] | None]) -> list[Scatter3d]:
"""Get a list of Scatter3d objects tracing the domain lines on a
3-dimensional chemical potential diagram.
"""
x, y, z = [], [], []
for simplexes in domains.values():
if simplexes:
for s in simplexes:
x.extend([*s.coords[:, 0].tolist(), None])
y.extend([*s.coords[:, 1].tolist(), None])
z.extend([*s.coords[:, 2].tolist(), None])
return [
Scatter3d(
x=x,
y=y,
z=z,
mode="lines",
line={"color": "black", "width": 4.5},
showlegend=False,
)
]
@staticmethod
def _get_3d_domain_simplexes_and_ann_loc(
points_3d: np.ndarray,
) -> tuple[list[Simplex], np.ndarray]:
"""Get a list of Simplex objects and coordinates of annotation for one
domain in a 3-d chemical potential diagram. Uses PCA to project domain
into 2-dimensional space so that ConvexHull can be used to identify the
bounding polygon.
"""
points_2d, _v, w = simple_pca(points_3d, k=2)
domain = ConvexHull(points_2d)
centroid_2d = get_centroid_2d(points_2d[domain.vertices])
ann_loc = centroid_2d @ w.T + np.mean(points_3d.T, axis=1)
simplexes = [Simplex(points_3d[indices]) for indices in domain.simplices]
return simplexes, ann_loc
@staticmethod
def _get_3d_formula_meshes(
draw_domains: dict[str, np.ndarray],
formula_colors: list[str] | None,
) -> list[Mesh3d]:
"""Get a list of Mesh3d objects for the domains specified by the
user (i.e., draw_domains).
"""
meshes = []
if formula_colors is None:
formula_colors = px.colors.qualitative.Dark2
for idx, (formula, coords) in enumerate(draw_domains.items()):
points_3d = coords[:, :3]
mesh = Mesh3d(
x=points_3d[:, 0],
y=points_3d[:, 1],
z=points_3d[:, 2],
alphahull=0,
showlegend=True,
lighting={"fresnel": 1.0},
color=formula_colors[idx],
name=f"{formula} (mesh)",
opacity=0.13,
)
meshes.append(mesh)
return meshes
@staticmethod
def _get_3d_formula_lines(
draw_domains: dict[str, np.ndarray],
formula_colors: list[str] | None,
) -> list[Scatter3d]:
"""Get a list of Scatter3d objects defining the bounding polyhedra."""
if formula_colors is None:
formula_colors = px.colors.qualitative.Dark2
lines = []
for idx, (formula, coords) in enumerate(draw_domains.items()):
points_3d = coords[:, :3]
domain = ConvexHull(points_3d[:, :-1])
simplexes = [Simplex(points_3d[indices]) for indices in domain.simplices]
x, y, z = [], [], []
for s in simplexes:
x.extend([*s.coords[:, 0].tolist(), None])
y.extend([*s.coords[:, 1].tolist(), None])
z.extend([*s.coords[:, 2].tolist(), None])
line = Scatter3d(
x=x,
y=y,
z=z,
mode="lines",
line={"width": 8, "color": formula_colors[idx]},
opacity=1.0,
name=f"{formula} (lines)",
)
lines.append(line)
return lines
@staticmethod
def _get_min_entries_and_el_refs(
entries: list[PDEntry],
) -> tuple[list[PDEntry], dict[Element, PDEntry]]:
"""Get a list of the minimum-energy entries at each composition and the
entries corresponding to the elemental references.
"""
el_refs = {}
min_entries = []
for formula, group in groupby(entries, key=lambda e: e.reduced_formula):
comp = Composition(formula)
min_entry = min(group, key=lambda e: e.energy_per_atom)
if comp.is_element:
el_refs[comp.elements[0]] = min_entry
min_entries.append(min_entry)
return min_entries, el_refs
@staticmethod
def _get_annotation(ann_loc: np.ndarray, formula: str) -> dict[str, str | float]:
"""Get a Plotly annotation dict given a formula and location."""
formula = htmlify(formula)
annotation = plotly_layouts["default_annotation_layout"].copy()
annotation |= {"x": ann_loc[0], "y": ann_loc[1], "text": formula}
if len(ann_loc) == 3:
annotation["z"] = ann_loc[2]
return annotation
@staticmethod
def _get_axis_layout_dict(elements: list[Element]) -> dict[str, str]:
"""Get a Plotly layout dict for either 2-d or 3-d axes."""
axes = ["xaxis", "yaxis"]
layout_name = "default_2d_axis_layout"
if len(elements) == 3:
axes.append("zaxis")
layout_name = "default_3d_axis_layout"
def get_chempot_axis_title(element) -> str:
return f"<br> μ<sub>{element}</sub> - μ<sub>{element}</sub><sup>o</sup> (eV)"
axes_layout = {}
for ax, el in zip(axes, elements, strict=True):
layout = plotly_layouts[layout_name].copy()
layout["title"] = get_chempot_axis_title(el)
axes_layout[ax] = layout
return axes_layout
@property
@lru_cache(maxsize=1) # noqa: B019
def domains(self) -> dict[str, np.ndarray]:
"""Mapping of formulas to array of domain boundary points."""
return self._get_domains()
@property
def lims(self) -> np.ndarray:
"""Array of limits used in constructing hyperplanes."""
lims = np.array([[self.default_min_limit, 0]] * self.dim)
for idx, elem in enumerate(self.elements):
if self.limits and elem in self.limits:
lims[idx, :] = self.limits[elem]
return lims
@property
def entry_dict(self) -> dict[str, ComputedEntry]:
"""Mapping between reduced formula and ComputedEntry."""
return self._entry_dict
@property
def hyperplanes(self) -> np.ndarray:
"""Array of hyperplane data."""
return self._hyperplanes
@property
def hyperplane_entries(self) -> list[PDEntry]:
"""List of entries corresponding to hyperplanes."""
return self._hyperplane_entries
@property
def border_hyperplanes(self) -> np.ndarray:
"""Bordering hyperplanes."""
return self._border_hyperplanes
@property
def el_refs(self) -> dict[Element, PDEntry]:
"""A dictionary of elements and reference entries."""
return self._el_refs
@property
def chemical_system(self) -> str:
"""The chemical system (A-B-C-...) of diagram object."""
return "-".join(sorted(e.symbol for e in self.elements))
def __repr__(self):
return f"ChemicalPotentialDiagram for {self.chemical_system} with {len(self.entries)} entries"
def simple_pca(data: np.ndarray, k: int = 2) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
A bare-bones implementation of principal component analysis (PCA) used in the
ChemicalPotentialDiagram class for plotting.
Args:
data: array of observations
k: Number of principal components returned
Returns:
tuple: projected data, eigenvalues, eigenvectors
"""
data = data - np.mean(data.T, axis=1) # centering the data
cov = np.cov(data.T) # calculating covariance matrix
v, w = np.linalg.eig(cov) # performing eigendecomposition
idx = v.argsort()[::-1] # sorting the components
v = v[idx]
w = w[:, idx]
scores = data.dot(w[:, :k])
return scores, v[:k], w[:, :k]
def get_centroid_2d(vertices: np.ndarray) -> np.ndarray:
"""
A bare-bones implementation of the formula for calculating the centroid of a 2D
polygon. Useful for calculating the location of an annotation on a chemical
potential domain within a 3D chemical potential diagram.
NOTE vertices must be ordered circumferentially!
Args:
vertices: array of 2-d coordinates corresponding to a polygon, ordered
circumferentially
Returns:
np.ndarray: Giving 2-d centroid coordinates.
"""
cx = cy = a = 0
for idx in range(len(vertices) - 1):
xi = vertices[idx, 0]
yi = vertices[idx, 1]
xi_p = vertices[idx + 1, 0]
yi_p = vertices[idx + 1, 1]
common_term = xi * yi_p - xi_p * yi
cx += (xi + xi_p) * common_term
cy += (yi + yi_p) * common_term
a += common_term
prefactor = 0.5 / (6 * a)
return np.array([prefactor * cx, prefactor * cy])
def get_2d_orthonormal_vector(line_pts: np.ndarray) -> np.ndarray:
"""
Calculates a vector that is orthonormal to a line given by a set of points. Used
for determining the location of an annotation on a 2-d chemical potential diagram.
Args:
line_pts: a 2x2 array in the form of [[x0, y0], [x1, y1]] giving the
coordinates of a line
Returns:
np.ndarray: A length-2 vector that is orthonormal to the line.
"""
x = line_pts[:, 0]
y = line_pts[:, 1]
x_diff = abs(x[1] - x[0])
y_diff = abs(y[1] - y[0])
theta = np.pi / 2 if np.isclose(x_diff, 0) else np.arctan(y_diff / x_diff)
return np.array([np.sin(theta), np.cos(theta)])
def _renormalize_entry(entry: PDEntry, renormalization_energy_per_atom: float) -> PDEntry:
"""Regenerate the input entry with an energy per atom decreased by renormalization_energy_per_atom."""
renormalized_entry_dict = entry.as_dict()
renormalized_entry_dict["energy"] = entry.energy - renormalization_energy_per_atom * sum(
entry.composition.values()
) # entry.energy includes MP corrections as desired
return PDEntry.from_dict(renormalized_entry_dict)