-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
72 lines (55 loc) · 1.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import tensorly as tl
import torch
def get_singular_values(X):
_, R = tl.qr(X.T)
R = R[0 : R.shape[1], :]
_, S, _ = torch.linalg.svd(R.T, False)
return S
def load_model(filepath):
try:
checkpoint = torch.load(filepath)
model = checkpoint["model"]
model.load_state_dict(checkpoint["state_dict"])
return model
except FileNotFoundError:
raise FileNotFoundError(f"Model file not found: {filepath}")
except KeyError as e:
raise KeyError(f"Invalid checkpoint format: missing key {e}")
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def get_network(net_name):
if net_name == "cifar10_densenet40":
from models import densenet40
net = densenet40()
elif net_name == "imagenet_alexnet":
from models import alexnet
net = alexnet()
else:
raise NotImplementedError(
f"The network {net_name} is currently not supported yet"
)
return net