-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcifar.py
153 lines (129 loc) · 4.95 KB
/
cifar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import torch.nn as nn
import argparse
from pathlib import Path
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.utils.data as data
from utils import AverageMeter, accuracy, get_network, load_model
def train(trainloader, model, criterion, optimizer, epoch, scheduler):
model.train()
losses = AverageMeter()
top1 = AverageMeter()
for inputs, targets in trainloader:
inputs, targets = inputs.cuda(non_blocking=True), targets.cuda(
non_blocking=True
)
outputs = model(inputs)
loss = criterion(outputs, targets)
prec1, _ = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1[0], inputs.size(0))
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
scheduler.step()
print(f"TRAIN, Epoch: {epoch}, Avg. loss: {losses.avg:.4f}, Top-1: {top1.avg:.4f}")
def test(testloader, model, criterion, epoch):
model.eval()
losses = AverageMeter()
top1 = AverageMeter()
with torch.no_grad():
for inputs, targets in testloader:
inputs, targets = inputs.cuda(non_blocking=True), targets.cuda(
non_blocking=True
)
outputs = model(inputs)
loss = criterion(outputs, targets)
prec1, _ = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1[0], inputs.size(0))
print(f"TEST, Epoch: {epoch}, Avg. loss: {losses.avg:.4f}, Top-1: {top1.avg:.4f}")
return top1.avg
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-net", type=str, required=True, help="net type")
parser.add_argument("-mode", type=str, required=True, default="train")
parser.add_argument("-weights", type=str, required=False)
parser.add_argument("-lr", type=float, default=0.1, required=False)
parser.add_argument("-epochs", type=int, default=200, required=False)
parser.add_argument("-wd", type=float, default=1e-4, required=False)
parser.add_argument("-b", type=int, default=128, required=False)
parser.add_argument("-momentum", type=float, default=0.9, required=False)
args = parser.parse_args()
p = Path(__file__)
if args.mode == "train":
weight_path = f"{p.parent}/weights"
end = args.net
elif args.mode == "fine_tune":
weight_path = f"{p.parent}/fine_tuned"
end = args.weights
end = end.split("/")[-1]
else:
raise ValueError(f"Wrong mode: {args.mode}")
Path(weight_path).mkdir(parents=True, exist_ok=True)
if args.mode == "train":
model = get_network(args.net)
elif args.mode == "fine_tune":
model = load_model(args.weights)
else:
raise ValueError(f"Wrong mode: {args.mode}")
model.cuda()
dataloader = datasets.CIFAR10
transform_train = transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
transform_test = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
trainset = dataloader(
root="./data", train=True, download=True, transform=transform_train
)
trainloader = data.DataLoader(
trainset, batch_size=args.b, shuffle=True, num_workers=4, pin_memory=True
)
testset = dataloader(
root="./data", train=False, download=False, transform=transform_test
)
testloader = data.DataLoader(
testset, batch_size=args.b, shuffle=False, num_workers=4, pin_memory=True
)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(
model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.wd
)
if args.mode == "train":
scheduler = optim.lr_scheduler.MultiStepLR(
optimizer, milestones=[100, 150], gamma=0.1
)
elif args.mode == "fine_tune":
scheduler = optim.lr_scheduler.OneCycleLR(
optimizer,
max_lr=args.lr,
steps_per_epoch=len(trainloader),
epochs=args.epochs,
)
else:
raise ValueError("Wrong mode")
best_acc = 0.0
for epoch in range(1, args.epochs + 1):
print()
train(trainloader, model, criterion, optimizer, epoch, scheduler)
best_top1 = test(testloader, model, criterion, epoch)
if best_acc < best_top1:
print(f"Saving model file to {weight_path}/{end}")
checkpoint = {"model": model, "state_dict": model.state_dict()}
torch.save(checkpoint, f"{weight_path}/{end}")
best_acc = best_top1
continue
if __name__ == "__main__":
main()